1. Scattering Theory

We want to describe the interaction of radiation with matter as a scattering process. Specifically, we are interested in calculating the
of scattering (and then the cross section), which is nothing else than the transition rate from an initial state (initial state of the matte!
incoming particle) and a final state (final state of the target + outgoing radiation).

This is a problem that can be solved by using Fermi’s Golden rule. We describe a scattering event as a particle coming close to a ta
or a medium, interacting with it and then being deflected away, thus we can define initial and final states and transition between thern

1.1 Cross Section

The scattering cross section is defined as the rate of scattering divided by the incoming flux of “particles”:
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We consider a particle + medium system, where the particle is some radiation represented by a plane wave of nfortnegmmaral,
we will have to define also other degrees of freedom denoted by the a@eg for photons we will have to define the polarization while
for particles (e.g.e neutrons) the spin.
The unperturbed Hamiltonian$, = H r + H s (radiation and medium). We assume thattfer +oo the radiation and matter systems
are independent, with (eigen)sat
i) = [kisma),  |f) = [kp,my)

with energies:
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and total energiesy; = hw; + ¢; andEy = hwy + €.
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Scattering Rate

The rate of scattering is given by the FGR:
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whereT is the scattering potential. As usual, we want to replace, if possible, the delta-function with the final density of states. Howeve
only the radiation will be left in a continuum of states, while the target will be left in one (of possibly many) definite state. To describe
this distinction, we separate the final state into the two subsystems.

We first define the partial projection on radiation states dily,., = (k¢|T'|k;). By writing the delta function as an integral we have:
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Now, sincee™ &t/ |m;) = e~/ |m;) (and similarly for|m ;) we can rewrite
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and obtain a new expression for the rate as a correlation of “transition” events:
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Final density of states

The final density of states describe the available states for the radiation. As we assumed that the radiation is represented by plane waves
(and assuming for convenience they are contained in a cavity ofieddgee final density of states is
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We can express this in terms of the eneygy,)d*k = p(E)dEdS2. For example, for photons, which hake= E/hc we have
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where the factor 2 takes into account the possible polarizations. For neutrons (or other particles dtch féﬁézt):
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If the material target can be left in more than one final state, we sum over these finalfstatesn the average rate is given by

Ws =3, Wyip(E)dEdS2 (assuming thalV;; does not change very muchiii? andd E).

Incoming Flux

The incoming flux is given by the number of scatterer per unit area and unitsﬁrﬁe,%. In the cavity considered, we can express

the time ag = L /v, thus the flux isP = 5. For photons, this is simplp = ¢/ L3, while for massive particles (neutrons)= hk/m,
yielding® = Lk
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1.2 Thermal Neutron Scattering

Using the scattering rate above and the incoming flux and density of state expression, we can find the cross section for thermal neutrons.
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we obtain
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where(-) indicates an ensemble average at the given temperature.
Now the eigenstates; ;) are plane wavesy|k) = ¢ (r) = e /L3/2. Then, defining) = k; — k; the transition matrix element is
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and
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Fermi Potential

To first order, we can approximaléby V', the nuclear potential in the center of mass frame (of the neutron+nucleus). You might recall
that the nuclear potential is a very strofig (~ 30MeV) and narrow {o ~ 2fm) potential. These characteristics seem to preclude a
perturbative approach, since the assumptioa @feak interaction (comped to the unperturbed system energy) is not satisfied. Still,
the fact that the potential is narrow means that the interaction only happens for a very short time. Thus, if we average over time, \
expect a weak interaction. More precisely, the scattering interaction only depends on the secat#adg length a, which is on the
ordera ~ Vyro. If we keepa constant, different combinations &f » will give the same scattering behavior. We can thus replace the

strong nuclear potential with a weaker, pseudo-potehtiaprovided this has a much longer range such that, ~ Vyrg = Vo7o. We

can choosé/,, 7y so that the potential is weak (eV) but the range is still short compared to the wavelength of the incoming neutron

k7o < 1. Then, it is possible to replace the potential with a simple delta-function at the origin.
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We can also define theound scattering length = -a ~ %, werem,, is the neutron’s mass amithe nucleus mass number. Then
the potential is
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Note thath (interaction length or bound scattering length) is a function of the potential strength and range, which depend on the isotoj
from which the neutron is scattered off. )
Then to first order the transition matrixg; = 2=2-b, or more generally, if there are many scatterers, each at a position we have:
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The scattering cross section becomes
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Notice that since the collisions are spin-dependent, we should average over isotopes and spin states ahajepidce, b, .

Scattering Lengths
Notice thatb does not depend explicitly on position, although the position determines which isotope/spin we should consider. What |
bub,? We have two contributions. For=y  thisi®, , ,whileforty ibig1 —d,.,). We then writeh,b, = (025 )6, +b =

b? 4 b2 which defines theoherent scattering length = b and theincoherent scattering length = b2 — b°. If there areN scatterers,
we haved_ b,b, = N(b? + b2).

Structure Factors

Using these definition, we arrive at a simplified expression:
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where we used theelf-dynamicstructure factor
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which simplifies to

1 [~ . . .
Ss(Quu) = o= [ etsrt (ei@r@gan)

21 J_ o
if all nuclei are equivalent (same isotope), andfthiedynamicstructurefactor
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The structure factors depend only on the material properties. Thus they give information about the material when obtained from expe
ments.



MIT OpenCourseWare
http://ocw.mit.edu

22.02 Introduction to Applied Nuclear Physics
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu/terms
http://ocw.mit.edu

	Scattering Theory
	Cross Section
	Thermal Neutron Scattering


