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22.058, Principles of Medical Imaging 


Fall 2002 


Homework #4 

________________________________________________________________________ 


1. Write a complete system description for the instrument function of a planar x-ray 

imager (assume scanned fan beam). Include: 

• Finite size source 

• Heal effect on source intensity and energy spectrum 

• Oblique angle effects 

• Depth dependent magnification 

• Quantum efficiency and PSF for the scintillator/photographic plate. 
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where 
d ≡ source− to− detector distance 

'S x  ', y( )≡ source 

µo ≡ linear attenuation coefficient 
M = d z  

m = −(d − z z ) 

•	 To include energy effects, make: 
' ' i. S x  ', y (( )⇒ S x  ', y , E) 

ii. is a function of E 

iii. add integration of E to both integrals 

• Quantum efficiency degrades I byη, a uniform effect 

•	 I xD, yD )= I x, y( ( )⊗ PSFdetector 
2. For a cylindrical object (long axis perpendicular to the beam) calculate the profile of 

X-ray intensity in a fan beam geometry, assuming that the beam is mono-energetic. 
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QuickTime™ and a
None decompressor

are needed to see this picture. 
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3. Calculate the effect of beam hardening on the CT image of a disk. 

The center is less attenuating than it should be, therefore the image is: 

QuickTime™ and a
None decompressor

are needed to see this picture. 

4. For the following sample, show (a) the projections and (b) the filtered projections. 

QuickTime™ and a
None decompressor

are needed to see this picture. 

See Appendix A. 



5. A sinusoidally modulated x-ray image is recorded by a one-sided screen film system as 

shown below. Find the recorded S/N as a function of frequency, where the signal is the 

sinusoidal component and the noise is the average background. On average the screen 

produces l photons per x-ray photon, t of which are transmitted to the emulsion where r is 

recorded. The pixel area of the film is much smaller than the system resolution. Neglect 

any critical angle effect between the screen and the film. 

X-ray photon number as a function of z = n0 (1+cos(2 π k z)). 

QuickTime™ and a
None decompressor

are needed to see this picture. 
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6. Write a program that calculates the Radon transform of an object function, then Fourier 

filters the projects, and finally reconstructs an image via back projection. 

See Appendix A. 



APPENDIX A: Mathematica File (Projection2.nb) 

Projection reconstruction and the Radon Transform 2 

The Radon Transform 

The forward Radon transform is to convert a 2-D object into a set of projects within the 

plane. 

Radon[object_, n_, fov_] := 

Table 

[ 


Integrate 

[ 


object DiracDelta 

[ 


m - x Cos[\[Theta]] - y Sin[\[Theta]] 

], 

{x, -fov, fov}, 

{y, -fov, fov} 


], 

{m, -2 fov/(n - 1), 

+2 fov/(n - 1), 2 fov/n}, 

{\[Theta], 0, Pi, Pi/(n - 1)} 


];


The double integral on the previous page is very slow to evaluate, and so we reduce it to 

a line integral along the line defined by the delta function. 

Radon2[object_, x_, y_, n_, fov_] := 

Table 

[ 


Nintegrate 

[ 


object[x, y], 

{yp, -fov, fov}, 

{PrecisionGoal -> 4} 


], 

{xp, -fov, fov, 2*fov/(n - 1)}, 

{\[Theta], 0, Pi, Pi/(n - 1)} 


] // N 




Define a simple test object 

object1[x_, y_] := If[x^2 + y^2 < 256, 1, 10^(-6)] // N; 


Plot3D 

[ 


object1[x, y], 

{x, -64, 64}, 

{y, -64, 64}, 

{PlotRange -> All, PlotPoints -> {64, 64}} 


] 


Robject1 = 

Radon2 

[ 


object1, 

xp Cos[\[Theta]] - yp Sin[\[Theta]], 

yp Cos[\[Theta]] + xp Sin[\[Theta]], 64, 64 


];


ListPlot3D[Robject1] 




Filtered Back Projection 

Fdata = Fourier[Robject1]; 


ListPlot3D[Re[Fdata], {PlotRange -> All}] 


Filt = 

Table 

[ 


If 

[ 


x <= 32 && y <= 32, 

Sqrt[x^2 + y^2], 

If 

[ 


x <= 32 && y > 32, 

Sqrt[x^2 + (65 - y)^2], 

If 

[ 


x > 32 && y <= 32, 

Sqrt[(65 - x)^2 + y^2], 

If 

[ 


x > 32 && y > 32, 

Sqrt[(65 - x)^2 + (65 - y)^2] 


] 

] 


] 

], 

{x, 0, 63}, 

{y, 0, 63} 


]; 




ListPlot3D[Filt] 


FiltFdata = Fdata*Filt; 

ListPlot3D[Re[FiltFdata], {PlotRange -> All}] 

Filtdata = Fourier[FiltFdata]; 


ListPlot3D[Re[Filtdata], {PlotRange -> All}] 




Back Projection of Filtered 

Bflimited[x_, y_, n_] := 

If 

[ 


x^2 + y^2 > 32^2, 

0, 

1/(2 Pi) 

Sum 

[ 


Transpose 

[ 


Re[Filtdata] 

] 

[[m*64 + 1]] 

[[Floor[x Cos[m*Pi] + y Sin[m Pi]] + 33]], 

{m, 0, 1 - 1/n, 1/n} 


] 

]; 


Plot3D 

[ 


BFlimited[x, y, 4], 

{x, -32, 32}, 

{y, -32, 32}, 

{PlotRange -> All, PlotPoints -> {64, 64}} 


] 




DensityPlot 

[ 


BFlimited[x, y, 4], 

{x, -32, 32}, 

{y, -32, 32}, 

{PlotRange -> All, PlotPoints -> {64, 64}, Mesh -> False} 


] 


Image = 

Table 

[ 


BFlimited[x, y, 64], 

{x, -32, 32}, 

{y, -32, 32} 


]; 


ListPlot3D[Image, {PlotRange -> All}] 




ListDensityPlot[Image, {PlotRange -> {0, 500}, Mesh -> False}] 



