#### **BWR Description**

#### Jacopo Buongiorno

**Associate Professor of Nuclear Science and Engineering** 

22.06: Engineering of Nuclear Systems





# Boiling Water Reactor (BWR)



Public domain image by US NRC.

# The BWR is a Direct Cycle Plant



Image by MIT OpenCourseWare.

| System pressure, MPa                 | 7.136           |
|--------------------------------------|-----------------|
| Core thermal power, MW <sub>th</sub> | 3323            |
| Electric power, MWe                  | 1130            |
| Thermal efficiency, %                | 34              |
| Vessel ID / Thickness / Height, m    | 6.4 / 0.16 / 22 |
| Core shroud diameter, m              | 5.2             |
| Number of fuel assemblies            | 764             |
| Core mass flow rate, kg/s            | 13702           |
| Core inlet temperature, °C           | 278.3           |
| Core outlet temperature, °C          | 287.2           |
| Core exit quality, %                 | 13.1            |
| Feedwater flow rate, kg/s            | 1820            |
| Feedwater temperature, °C            | 220             |
| Steam flow rate, kg/s                | 1820            |
| Steam temperature, °C                | 287.2           |
| Core power density, kW/L             | 50.5            |
| Core flow bypass                     | 14 %            |

## Phase Diagram of Water





# **BWR Core Layout**



# **BWR Fuel Assembly**



Image by MIT OpenCourseWare.



© source unknown All rights reserved. This content is excluded from our Creative Commons license. For more information, see <a href="http://ocw.mit.edu/fairuse">http://ocw.mit.edu/fairuse</a>.

Single bundle 3D view

Fuel assemblies have a duct wall to prevent vapor radial drifting

## **BWR Fuel Assemblies**



#### Fuel Assembly Parameters for 9x9 Fuel Assembly

| Parameter                                            | Value       |
|------------------------------------------------------|-------------|
| Fuel Pellet OD (mm)                                  | 9.55        |
| Fuel Pin OD (mm)                                     | 11.18       |
| Clad Thickness (mm)                                  | 0.71        |
| Fuel Pin Pitch (mm)                                  | 14.27       |
| Active Fuel rod height (mm)                          | 3707.9      |
| Total Fuel Rod height (mm)                           | 4178.7      |
| Part Length Rod Height (mm)                          | 2436        |
| Fuel Pins / Water Rods per Fuel Assembly             | 74/2        |
| Number of Part Length Rods                           | 8           |
| Inner/Outer diameter of the water rods (mm)          | 23.37/24.89 |
| Duct Thickness (mm)                                  | 2.54        |
| Clearance between duct and peripheral fuel rods (mm) | 3.53        |
| Clearance between water rods and fuel rods (mm)      | 1.79        |
| Assembly Outer Dimension (mm)                        | 137.54      |
| Inter-Assembly Gap (mm)                              | 14.86       |
| Average Linear Power (kW/m)                          | 16.46       |
| Pressure Drop (kPa)                                  | 160         |
| Average enrichment (wt%)                             | 4.31        |
| Average Discharge Burnup (GWd/t)                     | 56          |
| Refueling scheme                                     | 4 batches   |
| Number of rods with gadolinia                        | 8           |
| Gadolinia concentration (wt%)                        | 5           |
| Hydrogen to Heavy Metal Ratio                        | 4.53        |
| Void Coefficient (pcm/% void)                        | -144        |
| Fuel Temperature Coefficient (pcm/K)                 | -1.7        |
| Approximate Assembly Weight (kg)                     | 281         |

## **Control Blade**

Image removed due to copyright restrictions.



# **BWR Control Rod Drive System**

#### BWR Control Rod Drive System



#### BWR SPATIAL CORE PROPERTIES

(WITH CONTROL RODS PARTIALLY INSERTED)



# POWER IN FRESH FUEL ASSEMBLY AS ADJACENT CONTROL ROD IS WITHDRAWN TOWARD BOTTOM



# Connection of BWR Core Design to Neutronics

Why are the fuel rods spaced out more in a BWR than in a PWR?

Why is the core power density lower in a BWR core than in a PWR?

What is the purpose of spatial fuel enrichment zoning throughout a BWR fuel assembly?

What function do the water rods perform?

Why are the BWR control rods inserted from the bottom of the core?

Can dissolved boron be used as a means to control reactivity in a BWR core?

# BWR Bundle Design Advances



- Extended burnup features
  - More fuel pins (10×10) for a lower heat flux
  - Heavier fuel loadings
- Improved mechanical performance
  - "Barrier" cladding
  - Low growth, wear resistant materials
- Improved operational performance
  - Natural uranium blankets
  - Flow mixing grids to enhance margin to critical power
  - Part-Length Fuel Rods (Stability, SDM)
  - Large Central Water Channels (Stability, SDM)
  - Sophisticated poison & enrichment zoning

Control Rod

Control Rod

Fuel Rod

Part Length Fuel Rod

Image by MIT OpenCourseWare.

© source unknown All rights reserved. This content is excluded from our Creative Commons license. For more information, see <a href="http://ocw.mit.edu/fairuse">http://ocw.mit.edu/fairuse</a>.

# BWR Vessel and Vessel Internals

#### **BWR Vessel**



Vessel bottom head accommodates CR penetrations

From: L.E. Fennern, ABWR Seminar – Reactor, Core & Neutronics. April 13, 2007.

Large vessel made of ring forgings to avoid welds in the core region



ABWR RPV beltline forging, weight: 127 tons; dimensions: 7.48 m outside diameter, 7.12 m inside diameter, 3.96 m high; material: ASME SA 508, Class 3 EQ.

#### **BWR Vessel Internals**





From: V. Shah, P. MacDonald, Aging and Life Extension of Major LWR Components, 1993.



© Elsevier. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <a href="http://ocw.mit.edu/fairuse">http://ocw.mit.edu/fairuse</a>.

Source: Shah, V. N. and P. E. MacDonald. *Aging and Life Extension of Major Light Water Reactor Components*. Atlanta, GA: Elsevier Science, 1993. ISBN: 9780444894489.



# BWR Recirculation System ESBWR

BWR/6

**ABWR** 



External recirculation pumps + jet pumps

Ten internal recirculation pumps



Relies on natural circulation

#### Traditional BWR vs ABWR and ESBWR

| Parameter                | BWR/4-Mk I<br>(Browns Ferry 3) | BWR/6-Mk III<br>(Grand Gulf) | ABWR      | ESBWR     |
|--------------------------|--------------------------------|------------------------------|-----------|-----------|
| Power (MWt/MWe)          | 3293/1098                      | 3900/1360                    | 3926/1350 | 4500/1550 |
| Vessel height/dia. (m)   | 21.9/6.4                       | 21.8/6.4                     | 21.1/7.1  | 27.7/7.1  |
| Fuel bundles (number)    | 764                            | 800                          | 872       | 1132      |
| Active fuel height (m)   | 3.7                            | 3.7                          | 3.7       | 3.0       |
| Power density (kW/L)     | 50                             | 54.2                         | 51        | 54        |
| Recirculation pumps      | 2(large)                       | 2(large)                     | 10        | Zero      |
| Number of CRDs/type      | 185/LP                         | 193/LP                       | 205/FM    | 269/FM    |
| Safety system pumps      | 9                              | 9                            | 18        | Zero      |
| Safety diesel generator  | 2                              | 3                            | 3         | Zero      |
| Core damage freq./yr     | 1E-5                           | 1E-6                         | 1E-7      | 1E-7      |
| Safety Bldg Vol (m³/MWe) | 115                            | 150                          | 160       | <100      |

### BWR/6 Recirculation Flow



# **BWR Recirculation Pumps**



Image removed due to copyright restrictions.

© Elsevier. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <a href="http://ocw.mit.edu/fairuse">http://ocw.mit.edu/fairuse</a>.

# **BWR Jet Pumps**





#### **BWR Power Cycle**



Courtesy of GE Hitachi Nuclear Systems. Used with permission.

#### Radioactive Steam

Entire Power Conversion System becomes Radioactive ⇒ Shielding is Needed

Reaction products from water:

$$O^{16} + n \rightarrow N^{16} + H^1$$
,  $T_{1/2} = 7.2 \text{ s}$ ;  $\gamma$ ,  $\beta$   
 $O^{17} + n \rightarrow N^{17} + H^1$ ,  $T_{1/2} = 4.2 \text{ s}$ ;  $\gamma$ ,  $\beta$   
 $O^{18} + n \rightarrow O^{19} \rightarrow F^{19}$ ,  $T_{1/2} = 29 \text{ s}$ ;  $\gamma$ ,  $\beta$ 

Activation of corrosion products:

Fe<sup>54</sup> + n 
$$\rightarrow$$
 Fe<sup>55</sup>, T<sub>1/2</sub> = 2.7 y;  $\gamma$   
Fe<sup>58</sup> + n  $\rightarrow$  Fe<sup>59</sup>, T<sub>1/2</sub> = 44.6 d;  $\gamma$ ,  $\beta$   
Co<sup>59</sup> + n  $\rightarrow$  Co<sup>60</sup>, T<sub>1/2</sub> = 5.3 y;  $\gamma$ ,  $\beta$   
Ni<sup>58</sup> + n  $\rightarrow$  Ni<sup>59</sup>, T<sub>1/2</sub> = 8x10<sup>4</sup> y;  $\gamma$ ,  $\beta$   
Ni<sup>62</sup> + n  $\rightarrow$  Ni<sup>63</sup>, T<sub>1/2</sub> = 100 y;  $\gamma$ ,  $\beta$ 

#### Air Ejector

Removes Any Gases in Coolant Downstream of Condenser

They Must be Held Up and Stabilized

Nobel Gas Fission Products Escaped from Faulty Fuel Pins (Xe, Kr isotopes)

$$Xe^{135} \rightarrow Cs^{135} + b^{-} + g$$
,  $T_{1/2} = 9.2 \text{ h}$   
 $Kr^{88} \rightarrow Rb^{88} + b^{-} + g$ ,  $T_{1/2} = 2.8 \text{ h}$   
 $Kr^{85} \rightarrow Rb^{85} + b^{-1} + g$ ,  $T_{1/2} = 10.7 \text{ y}$ 

H<sub>2</sub> from Radiolysis of H<sub>2</sub>O N Isotopes Produced by (O + n) Reactions Gases Leaking into Condenser

# BWR safety systems and containment to be discussed later in the course

MIT OpenCourseWare http://ocw.mit.edu

22.06 Engineering of Nuclear Systems Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.