Operational Reactor Safety 22.091/22.903

Professor Andrew C. Kadak Professor of the Practice

Lecture 3 Reactor Kinetics and Control

Topics to Be Covered

- Time Dependent Diffusion Equation
- Prompt Neutrons
- Delayed Neutrons
- Point Kinetics Equation
- Reactivity
- Inhour Equation
- Feedback Fuel-Doppler, Moderator, Power
- Reactor Control

Key Concepts

- Time Dependent Diffusion Equation
 - Rate of change = rate of production rate of absorption – rate of leakage
- Prompt neutron keff
- Reactivity $\rho = (k-1)/k$
- Mean neutron generation time $l^* = 10^{-7} sec$
- Reactor Period $T = l*/\rho$
 - Time to increase power by factor of e

Impact of Delayed Neutrons

- 99 % of Neutrons are Prompt released at time of fission
- Fission Products also release neutrons with some delay based on half life - Precursors
- 20 Precursors grouped into 6 groups with half lives ranging from 0.25 sec to 1 minute
- Delayed neutron fraction
 - $-\beta_i$ = delayed neutrons from precursor group C_i/v

Delayed Neutrons

TABLE 5-2
Six-Precursor-Group Half-Lives and Delayed Neutron
Fractions for Thermal Fission of ²³⁵U[†]

Group	Half-life $T_{1/2}$ (s)	Delayed fraction β_i
1	55.0	0.00021
2	23.0	0.00142
3	6.2	0.00127
4	2.3	0.00257
5	0.61	0.00075
6	0.23	0.00027
Total	~	0.0065

[†]Data from G. R. Keepin, T. F. Wimett, and R. K. Zeigler, "Delayed Neutrons from Fissionable Isotopes of Uranium, Plutonium, and Thorium," *Phys. Rev.*, vol. 107, 1957, pp. 1044-1049.

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Neutron Balance

- Prompt source
- Delayed source
- Time Dependent Neutron Balance Equation

Key Kinetics Equations

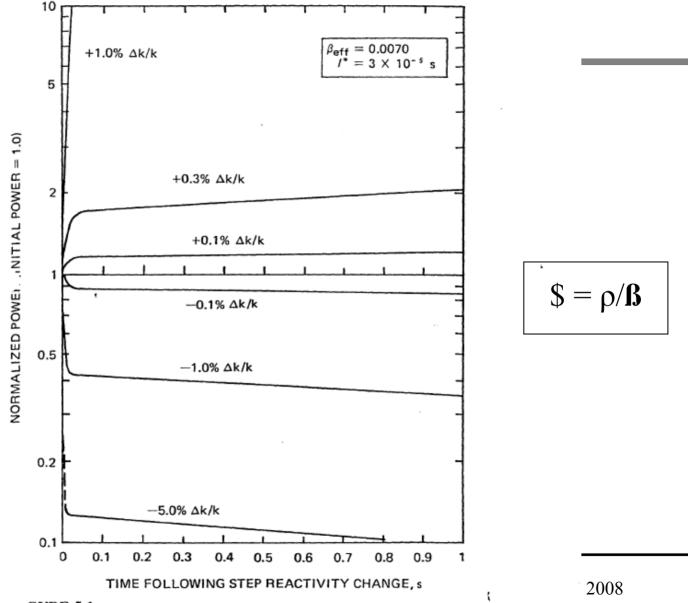
Point Kinetics Equations

Inhour Equation

Average Delayed Neutron from Uranium and Plutonium

TABLE 5-3
Delayed Neutron Fractions and Effective Delayed Neutron Fractions for ²³³ U, ²³⁵ U, ²³⁹ Pu

Nuclide	Delayed fraction β	Effective delayed fraction $B_{\mathrm{eff}}^{\dagger}$
²³³ U	0.0026	0.003
²³⁵ U	0.0065	0.0070
²³⁹ Pu	0.0021	0.0023


[†]Typical for LWR systems.

Delayed neutrons are produced at about ½ the energy of prompt neutrons

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Reactivity Insertions

- Reactor follows point kinetics equations
- Prompt jump drop
- Asymptotic Period considering delayed neutrons
- Prompt critical transition to prompt from delayed control $\rho = \mathbf{B}$
- Period of core used to start up reactor 80 sec.

GURE 5-1

Time-dependent power behavior following various reactivity insertions representative of a reactor using slightly enriched uranium fuel. Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Dep

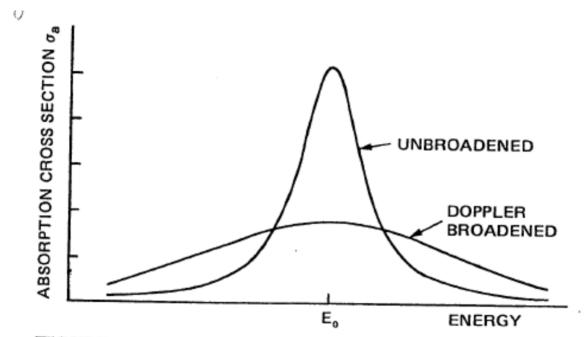
Reactivity Feedbacks

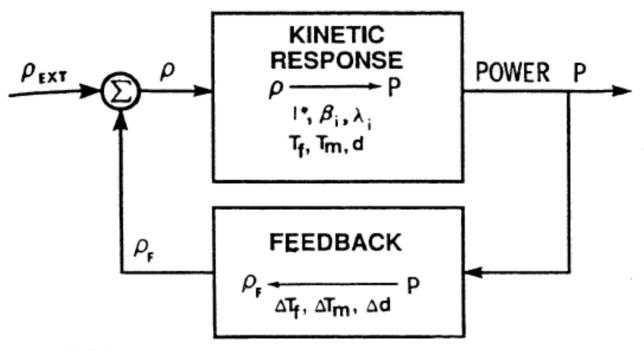
- Fuel Temperature
 - Thermal expansion
 - Doppler
- Moderator/Coolant
- Fuel Motion bowing

Reactivity Coefficients

- Fuel Temperature
- Moderator Temperature
- Moderator Density
- Void Coefficient
- Power Coefficient

Doppler Broadening




FIGURE 5-2

Effect of temperature on the effective shape of a resonance absorption cross section.

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Reactor Kinetics and Control

153

FIGURE 5-3

Reactivity feedback diagram.

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Prof. Andrew C. Kadak, 2008 Page 14

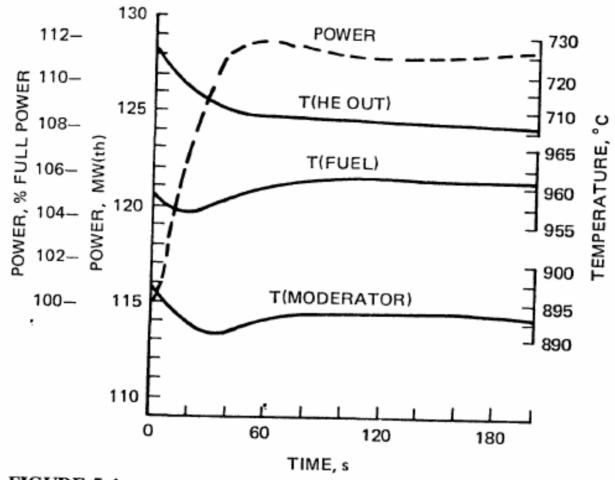


FIGURE 5-4

Response of the Peach Bottom HTGR to a 68°C decrease in helium inlet temperature (Adapted from *The Technology of Nuclear Reactor Safety*, T. J. Thompson and J. G. Beckerley (eds.), Vol. 1, by permission of The MIT Press, Cambridge, Massachusetts. Copyright © 1964 by the Massachusetts Institute of Technology.)

 $\label{lem:content} Figures @\ Hemisphere.\ All\ rights\ reserved.\ This\ content\ is\ excluded\ from\ our\ Creative\ Commons\ license.$ For more information, see $\ http://ocw.mit.edu/fairuse.$

Reactor Control

- Inherent feedback mechanism
 - Fast fuel
 - Slow moderator
- Control Rods
 - Relatively fast but rod worth an issue
 - Rod ejection
 - Rapid withdrawal
- Soluable Boron effect on Moderator Temp. Coefficient

Homework Assignment

- Knief Chapter 5
 - Problems: 1,4,6,9
- Read Chapter 6 for next class

MIT OpenCourseWare http://ocw.mit.edu

22.091 Nuclear Reactor Safety Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.