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Topics to Be Covered

Time Dependent Diffusion Equation

Prompt Neutrons
Delayed Neutrons
Point Kinetics Equation
Reactivity

Inhour Equation

Feedback - Fuel-Doppler, Moderator, Power

Reactor Control
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Key Concepts

Time Dependent Diffusion Equation

— Rate of change = rate of production — rate of
absorption — rate of leakage

Prompt neutron keff

Reactivity — p = (k -1)/k

Mean neutron generation time [* = 107 sec

Reactor Period — T = [*/p

— Time to increase power by factor of e
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Impact of Delayed Neutrons

* 99 % of Neutrons are Prompt — released at time of fission

 Fission Products also release neutrons with some delay
based on half life - Precursors

20 Precursors grouped into 6 groups with half lives
ranging from 0.25 sec to 1 minute

* Delayed neutron fraction

— B, = delayed neutrons from precursor group C. /v
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Delayed Neutrons

TABLE 5-2
Six-Precursor-Group Half-Lives and Delayed Neutron

Fractions for Thermal Fission of *°UT .

Group Half-life T, (3) Delayed fraction g;
1 55.0 0.00021
2 23.0 0.00142
.3 6.2 0.00127
4 2.3 0.00257
5 0.61 0.00075
6 0.23 0.00027
Total — 0.0065
Miiintdin

11'Iitm'm from G. R. Keepin, T. F. Wimett, and R. K. Zeigler,
“Delayed Neutrons from Fissionable Isotopes of Uranium, Plu-
tonium, and Thorium,” Phys, Rev., vol. 107, 1957, pp. 1044-1049.

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see ittp://ocw.mit.edu/fairuse.
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Neutron Balance

* Prompt source
* Delayed source

* Time Dependent Neutron Balance Equation
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Key Kinetics Equations

 Point Kinetics Equations

* Inhour Equation
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Average Delayed Neutron from
Uranium and Plutonium

TABLE 5-3

Delayed Neutron Fractions and Effective Delayed Neutron Fractions
for 233, 235 U, 239p,,

Nuclide Delayed fraction g Effective delayed fraction Bage!
My 0.0026 0.003
235y 0.0065 0.0070

¥ Pu 0.0021 0.0023

TTypical for LWR systems.

Delayed neutrons are produced at about '% the energy of prompt neutrons

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license.
For more information, seq http://ocw.mit.edu/fairuse.
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Reactivity Insertions

» Reactor follows point kinetics equations
e Prompt jump — drop
» Asymptotic Period — considering delayed neutrons

* Prompt critical — transition to prompt from delayed
control p=1_3

 Period of core used to start up reactor — 80 sec.
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Reactor Kinetics and Control 143
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Reactivity Feedbacks

* Fuel Temperature
— Thermal expansion
— Doppler

* Moderator/Coolant

* Fuel Motion — bowing
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Reactivity Coefficients

Fuel Temperature
Moderator Temperature
Moderator Density
Void Coefficient

Power Coefficient
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Doppler Broadening
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FIGURE 5-2
Effect of temperature on the effective shape of a resonance absorption cross section,

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see|http://ocw.mit.edu/fairuse.
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Reactivity Feedback

Reactor Kinetics and Control 153

KINETIC

D exy p RESPONSE POWER P
p P -
", "“gi1~-"'i'~+'I

T, Tm. d

D FEEDBACK
F

P, ~ P
OT;, ATy, Ad

FIGURE 5-3
Reactivity feedback diagram.

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license.
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54 Basic Theory
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FIGURE 5-4

Response of the Peach Bottom HTGR to a 68°C decrease in helium inlet temperature (Adapted from The
Tech{w{ﬂg}? of Nuclear Reactor Safery, T. . Thompson and J. G. Beckerley (eds.), Vol. |1, by
permission of The MIT Press, Cambridge, Massachusetts. Copyright © 1964 by the Massachusetts
Institute of Technology.)

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license.
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Reactor Control

* Inherent feedback mechanism
— Fast — fuel
— Slow — moderator

e Control Rods

— Relatively fast but rod worth an 1ssue

- Rod ejection
- Rapid withdrawal

 Soluable Boron — effect on Moderator Temp. Coefficient
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Homework Assignment

« Knief Chapter 5
— Problems: 1,4,6,9
« Read Chapter 6 for next class
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