Operational Reactor Safety

22.091/22.903

Professor Andrew C. Kadak Professor of the Practice

Spring 2008

Lecture 23: Current Regulatory Issues

Present Situation

- It doesn't get any better than this for nuclear energy!
 - Very Good Nuclear Regulatory Commission
 - Combined Construction Permit and Operating License
 - Early site permits supported by DOE
 - Concern about Global Climate Change
 - Rising and highly volatile natural gas and oil prices
 - Great rhetoric from the President and Congress about need for nuclear energy for environment, security and stability
 - Strong Pro-nuclear congressional legislation in the Energy Policy Act of 2005.

Congress

- Passed Energy Policy Act of 2005
 - Nuclear energy provisions
 - Production tax credit \$ 200/kw for first movers
 - Loan guarantees
 - Insurance protection of up to \$ 500 million for regulatory delays for first 2 plants.
 - Effort to stimulate orders for new plants
- Department of Energy working to develop advanced reactor designs as part of Generation IV reactors - 2030

Present New Market Offerings

- AP-1000 (Westinghouse)
 - 1,000 Mwe PWR
- ESBWR (General Electric)
 - 1390 Mwe BWR
- EPR (Framatome ANP)
 - 1,600 Mwe PWR
- APWR (Mitsubisi)_
 - 1,700 Mwe PWR

Certified Designs

- AP-600 (Westinghouse)
- ABWR 1250 Mwe (General Electric)
- System 80⁺ 1300 Mwe (Westinghouse/CE)

Trends

- More passive safety features
- Less dependency on active safety systems
- Lower core damage frequencies 10-6
- More back up safety systems more trains
- Some core catchers
- Larger plants to lower capital cost \$/kw
- Simplification in design
- Terrorist resistant features
- Construction time reduced but still long 4 years

ESBWR Design Features

- Natural circulation Boiling Water Reactor
- Passive Safety Systems
- •Key Improvements:
 - Simplification
 - Reduction in systems and equipment
 - Reduction in operator challenges
 - Reduction in core damage frequency
 - Reduction in cost/MWe

Differences relative to ABWR

ABWR	ESBWR	
Recirculation System + support systems	Eliminated (Natural Circulation)	
HPCF (High Pressure Core Flooder) (2 each)	Combined all ECCS into one Gravity Driven Cooling System (4 divisions)	
LPFL (Low Pressure Core Flooder) (3 each)		
RCIC (Isolation/Hi-Pressure small break makeup)	Replaced with IC heat exchangers (isolation) and CRD makeup (small break makeup)	
Residual Heat Removal (3 each) (shutdown cooling & containment cooling)	Non-safety shutdown cooling, combined with cleanup system; Passive Containment Cooling	
Standby Liquid Control System–2 pumps	Replaced SLCS pumps with accumulators	
Reactor Building Service Water (Safety Grade) And Plant Service Water (Safety Grade)	Made non-safety grade – optimized for Outage duration	
Safety Grade Diesel Generators (3 each)	Eliminated – only 2 non-safety grade diesels	

2 Major Differences – Natural Circulation and Passive Safety

Passive Safety Systems Within Containment Envelope

Fission Research at MIT Nuclear Science and Engineering

Annular Fuel for High Power Density PWRs

- Large project lead by MIT (Westinghouse, Gamma Eng. , Framatome ANP, AECL)
- Operates at low peak temperatures (1000°C lower than solid fuel)
- Fuel allows increase of power density by 50% keeping same TH margins
- Allows achievement of burnup of 90MWd/kgHM
- Appreciably increase of rate of return (economically attractive)

Thermal Hydraulic Performance: Fuel Temperature

† Very low operating peak fuel temperature

Nanofluids Project

- Nano... what? A nanofluid is an 'engineered' colloid = base fluid (water, organic liquid, gas) + nanoparticles
- Nanoparticle size: 1-100 nm
- Nanoparticle materials: Al₂O₃, ZrO₂, SiO₂, CuO, Cu, Au, C
- Critical heat flux increases

Makes nanofluids appealing for nuclear. Possibility of significant power density increase.
But large gaps in database and understanding of the enhancement mechanisms exist.

Supercritical CO2 cycle for Gen. IV reactors

- Achieves high efficiency at medium temperature
- Has ~25% lower cost than Rankine cycle
- CO2 abundant, cheap and does not leak as easily as helium
- Is extremely compact (300MWe turbine fits in home size refrigerator)
- Applicable to reactors with outlet temperature >500°C (most GenIV reactors)

Thermal/net efficiency =51%/48%

300MW S-CO2 turbine

Gas Cooled Fast Reactor for Gen IV Service

- •Strives to achieve Gen IV goals sustainability, safety and economics
- •Allows management of transuranics from LWR spent fuel
- •Uses combination of active and passive decay heat removal systems (passive based on natural circulation at elevated pressure)
- •Direct, highly efficient S-CO2 cycle
- •Innovative tube-in-duct fuel assemblies with vibropack (U,TRU)O2 fuel
- •Large power rating (1200MWe)
- •Breed &Burn core, which does not require reprocessing possible

Fuel Cycle Options

The CONFU Assembly Concept

 \underline{Co} mbined \underline{N} on \underline{F} ertile and \underline{U} O_2 Assembly

- Multi-recycling of all transuranics (TRU) in fertile free pins leads to zero net TRU generation
- Preserves the cycle length, neutronic control and safety features of all uranium cores

Courtesy of Shwageraus, E. Used with permission.

Risk Informed Design, Safety and Licensing

- Use PRA principles in design of CO2 gas reactor – avoid problems
- Technology neutral risk informed safety standards
- "License by test" regulatory approach for innovative reactors

The "Next" Generation

- Next Generation Nuclear Plant (NGNP)
- Nuclear Hydrogen Production
- Pebble Bed Reactors High Temperature Gas
- Risk Informed Design, Safety and Licensing

Next Generation Nuclear Plant

- High Temperature Gas
- Indirect Cycle
- Electric generation
- Hydrogen production
- Pebble bed reactor or block reactor?
- Built at the Idaho National Laboratory

Next Generation Nuclear Plant

Very-High-Temperature Reactor (VHTR)

Characteristics

- Helium coolant
- 1000°C outlet temperature
- Water-cracking cycle

Benefits

- Hydrogen production
- High degree of passive safety
- High thermal efficiency
- Process heat applications

U.S. Product Team Leader: Dr. Finis Southworth (INEEL)

1150 MW Combined Heat and Power Station

Ten-Unit VHTR Plant Layout (Top View)

VHTR Characteristics

- Temperatures > 900 C
- Indirect Cycle
- Core Options Available
- Waste Minimization

Oil Refinery

Hydrogen Production

Desalinization Plant

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Overview of the efficiency of nuclear hydrogen production options

- The hydrogen production efficiency =
 LHV for gaseous product/thermal energy of fission reactors
- Deviation from idea efficiency values can be due to:
 - heat losses
 - irreversibilities in the components
- Final comparison should take the same conditions into account

	Approach	Electrochemical		Thermochemical	
	Feature	Water Electrolys is	High Temperature Steam Electrolysis	Steam- Methane Reformin g	Thermochemica I Water Splitting
	Required temperature, °C	< 100, at P _{atm}	>100, at P _{atm}	> 700	> 800 for S-I WSP > 700 for UT-3 > 600 for Cu-CL
al	Efficiency of the process, %	65 – 80	65-95 (200>T>800 °C)	60-80 (T>700°C)	> ~40, depending on TC cycle and temperature
	Energy efficiency coupled to LWR, %	21-30	~30	Not Feasible	Not Feasible
	Energy efficiency coupled to MHR, ALWR, ATHR, or S-AGR, %	21-40	35-45 (Depending on electrical cycle and temperature)	> 60 (T>700°C)	>~ 40, depending on TC cycle and temperature

Hydrogen Production Energy Efficiency

Comparison of the thermal-to-hydrogen efficiency of the HTSE, SI and WSP related technologies as a function of temperature

Pebble Bed Reactor Research

- Reactor physics modeling of core MCNP
- Fuel performance model
- Safety analysis LOCA and Air Ingress with CFD tools
- Pebble Flow modeling and experiments
- Balance of plant modularity "lego style"
- Overall plant conceptual design
- Non-proliferation studies
- Waste disposal studies
- Intermediate Heat Exchanger design and testing

What is a Pebble Bed Reactor?

- · 360,000 pebbles in core
- about 3,000 pebbles handled by FHS each day
- · about 350 discarded daily
- one pebble discharged every 30 seconds
- average pebble cycles through core 10 times
- Fuel handling most maintenance-intensive part of plant

FUEL ELEMENT DESIGN FOR PBMR

Reactor Unit

AVR: Jülich 15 MWe Research Reactor

HTR- 10 China First Criticality Dec.1, 2000

China - Rongcheng Site for 19 Pebble Bed Reactors for 3600 Mwe @ 190 Mwe each

Features of MIT MPBR Design

Thermal Power	250 MW
Gross Electrical Power	132.5 MW
Net Electrical Power	120.3 MW
Plant Net Efficiency	48.1% (Not take into account cooling IHX and HPT. if considering, it is believed > 45%)
Helium Mass flowrate	126.7 kg/s
Core Outlet/Inlet T	900°C/520°C
Cycle pressure ratio	2.96
Power conversion unit	Three-shaft Arrangement

Current Design Schematic

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

PLANT MODULE SHIPPING BREAKDOWN

Space-Frame Concept

- Standardized Frame Size
- 2.4 x 2.6 x 3(n) Meter
- Standard Dry Cargo Container
- Attempt to Limit Module Mass to ~30t / 6m
 - ISO Limit for 6m Container
 - Stacking Load Limit ~190t
 - ISO Container Mass ~2200kg
 - Modified Design for Higher
 Capacity—~60t / 12m module
- Overweight Modules
 - Generator (150-200t)
 - Turbo-Compressor (45t)
 - Avoid Separating Shafts!
 - Heavy Lift Handling Required
 - Dual Module (12m / 60t)

- Stacking Load Limit Acceptable
 - Dual Module = ~380T
 - Turbo-generator Module
 <300t
- Design Frame for Cantilever Loads
 - Enables Modules to be Bridged
- Space Frames are the structural supports for the components.
- Only need to build open vault areas for space frame installation - RC & BOP vault
- Alignment Pins on Module Corners
 - High Accuracy Alignment
 - Enables Flanges to be Simply Bolted Together
- Standardized Umbilical Locations
 - Bus-Layout of Generic Utilities(data/control)41

Upper IHX Manifold in Spaceframe

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

"Lego" Style Assembly in the Field

Overall Structure

40 m

Distributed Production Concept

Distributed Production Concept - Virtual Factory!

- Evolution of the "Reactor Factory" Concept
- There Is NO Factory
 - Off-load Manufacturing Capital Expense to Component Suppliers
 - Decrease follow-through capital expense by designing to minimize new tooling—near COTS
 - Major component fabricators become mid-level integrators following design delivered from HQ
 - Reduces Transportation Costs
 - Component weight ≈ Module weight: Why Transport It Twice?
 - Enables Flexible Capitalization
 - Initial systems use components purchased on a one-off / low quantity basis
 - Once MPBR demand established, constant production + fabrication learning curve lower costs

- Site / Building Design Does Not Require Specialized Expertise
 - Enables Selection of Construction Contractors By Location / Cost
 - Simplified Fabrication Minimizes "MPBR Inc." Workforce Required
- Simple Common Space-Frame Design
 - Can be Easily Manufactured By Each Individual Component Supplier
 - Or if necessary sub-contracted to generic structural fabricator
- Modern CAD/CAE Techniques Enable High First-Fit Probability— Virtual "Test-Fit"

Challenges

- Unless the cost of new plants can be substantially reduced, new orders will not be forthcoming.
- The novel truly modular way of building plants may be the right way to go – shorter construction times.
- Smaller units may be cheaper than larger units economies of production may trump the economies of scale when financial risks are considered.
- The bottom line is cents/kwhr not \$/kwe!!

Why Helium Gas? Why Now? Differences Between Water Reactors

- Higher Thermal Efficiencies Possible
- Helium inert gas
- Minimizes use of water in cycle corrosion
- Single Phase coolant fewer problems in accident
- Utilizes gas turbine technology
- Lower Power Density no meltdown!
- Less Complicated Design (No Emergency Core Cooling Systems Needed)
- Lower cost electricity

Generating Cost PBMR vs. AP600, AP1000, CCGT and Coal

(Comparison at 11% IRR for Nuclear Options, 9% for Coal and CCGT1)

(All in ¢/kWh)		<u>AP10</u>	<u>00 @</u>		<u>Coal²</u>		CCGT @ Nat. Gas = 3			
	<u>AP600</u>	<u>3000Th</u>	<u>3400Th</u>	<u>PBMR</u>	' <u>Clean'</u>	'Normal'	<u>\$3.00</u>	<u>\$3.50</u>	<u>\$4.00</u>	<u>\$10.00</u>
Fuel	0.5	0.5	0.5	0.48	0.6	0.6	2.1	2.45	2.8	7.0
O&M	0.8	0.52	0.46	0.23	8.0	0.6	0.25	0.25	0.25	0.25
Decommissioning	0.1	0.1	0.1	0.08	-	-	-	-	-	
Fuel Cycle	<u>0.1</u>	<u>0.1</u>	<u>0.1</u>	<u>0.1</u>	<u> </u>	<u>-</u>			<u></u>	
Total Op Costs	1.5	1.22	1.16	0.89	1.4	1.2	2.35	2.70	3.05	7.25
Capital Recovery	<u>3.4</u>	<u>2.5</u>	<u>2.1</u>	2.2	<u>2.0</u>	<u>1.5</u>	<u>1.0</u>	<u>1.0</u>	1.0	1.0
Total	4.9	3.72	3.26	3.09	3.4	2.7	3.35	3.70	4.05	8.75

¹ All options exclude property taxes

² Preliminary best case coal options: "mine mouth" location with \$20/ton coal, 90% capacity factor & 10,000 BTU/kWh heat rate

³ Natural gas price in \$/million Btu

Pebble Power Applications

- Electricity Direct or Indirect Cycle
 - high temperature gas turbine
 - steam cycle using steam generators
- Process Heat
 - Hydrogen high temperature thermo-chemical process
 - Desalinization bottoming cycle
- Electricity and Process Heat
 - Oil Sands
 - Oil Shale
 - Hydrogen High Temperature Steam Electrolysis
 - Oil Production and Refining
 - Coal Gasification and Liquifaction
- Drivers for nuclear are CO2 and Economics

Syncrude Plant Site in Alberta

Summary

Main strategic research lines in fission:

- 1) Improve LWR economics
- 2) Develop NGNP Plant with Hydrogen Production
- 2) Develop Gen-IV systems
- 3) Improve nuclear fuel cycle
- 4) Global Nuclear Energy Partnership

Fast Neutron Reactors that "burn" waste and breed fuel – design course objective

MIT OpenCourseWare http://ocw.mit.edu

22.091 Nuclear Reactor Safety Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.