
Lecture 1 

Basics of Electrostatics 

 

Introduction 

 

1. The first topic of interest is “electrostatics” 

2. The topic covered today include 

a. The Coulomb force 

b. Definition of the electric field 

c. Gauss’s law 

d. Poisson’s equation 

e. Electrostatics in integral and differential form 

f. A simple problem 

3. What is electrostatics? 

a. DC behavior – no time variation or waves 

b. No magnetic field or currents 

c. Study of the behavior of stationary electric charges and the 

resulting electric fields 

d. Electrostatics can be formulated in an integral form.  This is 

elegant but usually not very useful except in special geometries with 

simple boundary conditions 

e. Electrostatics can be formulated in differential form.  This is much 

more useful for actually solving problems.  The solution techniques 

also apply to many other areas of physics (e.g. mechanics, 

thermodynamics, aeronautics, chemical engineering, etc.) 

 

The basis of electrostatics 

 

1. The basis of electrostatics is the Coulomb force between two charged 

particles. 
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2. Four our purposes we should view the Coulomb force as an experimentally 

determined relationship based on a large number of observations.  It is a 

basic postulate. 

3. Coulombs law is shown below 

                                
4. The force is directed along the line of centers – that is, along  r

5. The force on charge 1 due to charge 2 is proportional to .  Similarly, 

the force on charge 2 due to charge 1 is proportional to .  Therefore it 

follows that 

1 2q q

2 1q q

12 21F F= . 

6. The force is inversely proportional to the distance between the charges. 

7. Coulomb’s law in SI units is given by 
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8. How do we determine the right sign?  The correct sign is based on the 

observation that like charges repel and opposite charges attract. 

9. Let’s set up a coordinate system where the various geometric vectors have 

the directions illustrated below 
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10. From this diagram it follows that 
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11. When  and  have the same sign, the force on  due to  is along 

 
1q 2q 1q 2q

12+r
 

Definition of the electric field 

 

1. A useful way to think about the force is to imagine that each charge 

produces a “force field” which acts on any charges present. 

2. Therefore, by definition charge  produces a force field  over all space 

defined by 
2q E
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3. To check this assume a charge  is placed at .  Then, as expected, 

the force due to charge 2 on charge 1 is given by 
1q 1=r r
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4. The introduction of E  would not be very useful if we only considered 

situations with two charges 

5. The electric field becomes useful when we consider the interaction of many 

charges and make use of the powerful principle that the net force on any 

charge is obtained by linear superposition. 

6. Superposition cannot be proved but is found to be an excellent 

experimental observation, valid on all but the sub-atomic scale. 

7. What exactly does linear superposition mean?  Consider a system with 

three charges.  Then the force on charge 1 due to charges 2 and 3 is given 

by 

 

  1 12= +F F F13

 

8. The forces simply add together. 

9. If the force were 
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 then superposition would not be valid. 

 

10. The conclusion from this discussion is that if a large number of charges is 

present then the force on a given charge q  due to all the other charges can 

be written as 
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Continuous charge distributions 

 

1. Clearly it is impractical as well as useless to determine the electric field by 

summing over  individual charges. 2010
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2. For the common situation involving a large number of charges it is 

convenient and highly accurate to replace the  charges with a smooth, 

smeared out, continuous distribution of charge, called the charge density, 

having the units  

2010

3/Coulomb m

3. Physically, the electric field outside the charge distribution cannot depend 

on the precise location of any individual charge.  The same is true for the 

electric field within the charge distribution if there are enough total 

charges present so that the net field due to the bulk of charges dominates 

the field from a few nearest neighbors. 

4. How do we make the transition from discrete charges to a continuous 

distribution?  The procedure is as follows. 
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5. Here  is the charge density measured in  ρ 3/Coulombs m

6. Therefore, the definition of the electric field E  for a continuous 

distribution of charges is given by 
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The scalar potential 

 

1. So far we have been talking about forces and the fact that the electric field 

 is a useful way to describe these forces. E

2. The specific inverse square law dependence of the Coulomb force allows us 

to introduce a scalar potential.  This function is very convenient in terms 

of mathematical simplification when we want to solve actual problems. 

3. The potential  is introduced by noting the following relationship ( )φ r
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4. Therefore it follows that 
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5. Note that the  comes outside the integral since it is a function of the 

unprimed coordinates, implying that 

∇
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6. From this form we see that we can introduce a scalar potential  

defined by  

( )φ r
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7. This relation determines the potential function in terms of the charge 

density. 

 

Gauss’s law 

 

1. The potential relation given above is known as Gauss’ law.  It is an 

integral form of electrostatics. 

2. This form is useful if we know, by one way or another, the charge 

distribution .  A straightforward integration then yields . ( )ρ ′r ( )rφ

3. Gauss’s law is also valid when conductors are present.  However, it is 

usually not very useful in these situations because we do not know the 

charge distributions on the conductors.  Instead, we most often know the 

potentials on the surfaces of the conductors. 

4. When the potentials are specified we shall see that the differential form of 

electrostatics is a more useful formulation. 

5. The last point to note is the vector identity .  It then 

follows that in electrostatics .  The conclusion is 

that any electrostatic electric field is curl free. 

( ) 0scalar∇×∇ =

( ) 0φ∇× = ∇× ∇ =E

 

The differential form of electrostatics 

 

1. The differential form of electrostatics can be derived from Gauss’s law by 

noting the following identity which is valid for  ′≠r r
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2. We have to be careful near  since there is a delta function 

contribution.  This can be seen as follows using the divergence theorem. 

′=r r
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3. We can evaluate the integral by choosing the volume of interest to be a 

small sphere centered around  and taking the limit as the radius of 

the sphere approaches zero 

′=r r

 
4. For this choice the differential surface element becomes 

 where 2 sindS u d dθ θ φ′ ′ ′ ′= ′ u ′ = −r r′ .  The integral becomes 
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5. Therefore we see that  
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6. This implies that 
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7. We can now obtain the differential form of Gauss’s law as follows 
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8. This is the differential form of electrostatics 

9. If we now set  we obtain Poisson’s equation φ= −∇E
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10. For the special case where  in some region of space then Poisson’s 

equation reduces to 

( ) 0ρ =r
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 and is known as Laplace’s equation. 

 

Summary of electrostatics 

 

1. The goal in electrostatics problems is to determine the potential . ( )rφ
2. In the integral formulation 
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3. In the differential formulation 
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4. In either case the electric field is calculated by evaluating 

 

  φ= −∇E
 

5. For any electrostatic problem the electric field satisfies 

 

  0∇× =E
 

6. Since E  is curl free, Stokes theorem implies that around any closed loop 
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7. Similarly, using the divergence theorem  leads to the result that in any 

closed volume 
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 where Q  is the total charge enclosed in the volume. 

 

A simple electrostatics problem 

 

1. Find the electric field due to a uniform spherical charge using Poisson’s 

equation. 
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2. Use Poisson’s equation for a spherically symmetric system 
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3. The boundary conditions are 

 
( )

( )

0 0      regularity at the origin

0      choice of potential at  is arbitrary

φ

φ

′ =

∞ = ∞
 

 

 11



4. Across the interface we assume that there are no surface charges.  This 

plus the curl free property of  imply the following jump conditions 

across the interface. 

E
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5. The solution in terms of arbitrary constants is given by 

 

 

2
2 0

1
0

4
3

6I

II

c rc
r
cc
r

ρφ
ε

φ

= + −

= +
 

 

6. The boundary conditions require that  and . 2 0c = 3 0c =
7. The jump conditions require that   
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8. Solving for  we find  1 2,c c
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9. The potential is thus given by 
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10. Note that the potential far from the sphere is the same as the potential 

generated by an equivalent charge q  at the origin whose value is 
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