
Lecture 3 

Separation of Variables 

 

Today’s topics 

 

1. Solving electrostatic problems – continued 

2. Specifying boundary conditions 

3. Calculating the surface charge on a conductor 

4. Separation of variables in 2-D and 3-D geometries 

5. Some problems using separation of variables 

 

Boundary conditions 

 

1. The goal is to solve 

 

 2

0

ρφ
ε

∇ = −  

 

2. Typical problems are as follows 

 
3. The  operator has second order derivatives.  Therefore we need “two” 

boundary conditions. 

2∇

4. For the first case we can specify  on the conductor and 

require that the solutions be regular over the entire closed volume. 
0 .constφ φ= =

5. For the second case we can specify ( )0Sφ φ= 0  and ( )1 1Sφ φ=  

6. For non-perfectly conducting surfaces we can specify the surface 

dependence of either ( )Sφ  or ( )Sφ⋅∇n .  If we specify ( )Sφ⋅∇n  we must 

also specify φ  at one point anywhere in the volume to determine the 

arbitrary constant that can always be added to the potential. 
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7. Here is something you NEVER want to do.  Consider the following class 

of problems. 

 
8. In general you cannot solve Laplace’s equation in the vacuum region 

specifying both ( )Sφ  and ( )Sφ⋅∇n  on a single surface in order to 

determine the unknown charge density within the volume. 

9. This problem is ill conditioned and will lead to exponentially large errors. 

10. Here is a 1-D example.  Let ( ) ( ) ( ), expx z x izφ φ= .  Then .  

Now solve 

2φ φ φ′′∇ = −

 

 
( ) ( )

( )

0        0 1    0 1

Solution:             xx e

φ φ φ φ

φ −

′′ ′− = = −

=

=
 

 

11. Now assume there is a small error in the specification of the boundary 

conditions.  What happens to the solution? 

 

  

 
( ) ( )

( )

2 0        0 1     0 1

Solution:             x x

k

x e e

φ φ φ δ φ

φ δ−

′′ ′− = = + = − +

= +

δ
 

 

12. Note the exponentially growing contribution arising from the error. 

 

Calculating the surface charge on a perfect conductor 

 

1. Consider the following problem 

 

 ( ) ( )2

0

        0   regularS Vρφ φ φ
ε

∇ = − = =  

 2



 
2. Near the conductor the situation is as follows 

 

 

1 2

0

1 2
0S S

d d

dS dS d

ρ
ε

ρ
ε

′ ′∇ ⋅ =

′⋅ + ⋅ =

∫ ∫

∫ ∫ ∫

E r r

E n E n r
 

 

3. Now, simplify the various terms 

 

 

( )
1

2 2

0 0 0

1

2

      surface charge density

0               since 0 outside the conductor
S

S S

S Sd

dS

dS dS S S

ρ ρδ σ σ ρδ
ε ε ε

φ

′ = = = =

⋅ = =

⋅ = − ⋅ = − ⋅ = ⋅ ∇

∫

∫

∫ ∫

r

E n E

E n E n E n n

 

 

4. Note that  is the outward normal.  We now equate terms  leading 

to the desired expression for the surface charge density in terms of the 

potential 

2= −n n

 

 ( )
0

S

σ φ
ε

= ⋅∇n  
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1. Separation of variables is a good technique for solving a reasonably general 

class of problems satisfying Laplace’s equation.  Its main limitation is that 

it only works in sufficiently simple geometries where separated solutions 

can be found. 

2. The key issue with the geometry is as follows.  Any separated solution 

satisfies Laplace’s equation regardless of the geometry.  However, if the 

boundaries of the actual problem do not coincide with the contours where 

one of the separation functions is a constant, then separation of variables 

does not, in general, work.  More on this important problem in the next 

lecture. 

3. Below, several (but not all) geometries are discussed for which separated 

solutions do work.  We demonstrate the procedure for 2-D and 3-D 

geometries.   

4. As a general comment note that periodic or oscillatory separation 

functions are good for satisfying boundary conditions since they form 

complete sets.  Examples: ( ) ( ) ( )0 0sin / ,  or /  with 0n nn x a J r a Jπ α α = . 

5. Non-oscillatory functions are usually not useful since they do not form 

complete sets; that is an arbitrary function cannot be expressed as a series 

of separation functions of the form ( )exp /n x aπ− . 

6. When solving Laplace’s equation at least one set of separation functions 

will always be non-oscillatory. 

 

Separation of variables in a 2-D slab geometry 

 

1. Here and below we derive the basic separation functions applicable to a 

specified geometry.  We start with a 2-D slab where Laplace’s equation 

reduces to 

 

 
2 2

2 2 0
x y
φ φ∂ ∂+ =

∂ ∂
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Separation of variables – theory 



2. We now assume a separated solution of the form ( ) ( ) ( ),x y X x Y yφ = .  

Laplace’s equation can now be written as 

 

 
2 2

2
2 2

1 1d X d Y k
X dx Y dy

= − = −  

 

3. The quantity  is the separation constant.  It must be a constant since 

this is the only way a function of x  can equal a function of y .   

2k

4. In general, an infinite number of k  values are acceptable, depending on 

the dimensions of the boundaries.  Thus, we must allow  and then 

sum over all allowable  values.  The allowable values of  cannot be 

determined until the boundaries are specified. 

nk k→

nk nk

5. The separated solutions for a given n  value can be written as 

 

 
( ) ( ) ( )
( ) ( )

cos , sin

exp , exp( )
n n

n n

X x k x k x

Y y k y k y

=

= −
n

n

 

 

6. The general solution for the potential has the form 

 

 ( ) ( ), n nk y k y ik x
n nx y a e b e eφ

∞
−

−∞
= +∑ n  

 

7. Observe that the general solution has non-oscillatory solutions in y  and 

oscillatory solutions in . x

8. Clearly we can interchange the role of x  and y  by switching the sign of 

.  In more general cases the  can be complex. 2
nk 2

nk

 

Separation of variables in a 2-D ( ),r θ  cylindrical geometry 

 

1. In cylindrical ( ),r θ  geometry Laplace’s equation reduces to 

 

 
2

2 2

1 1 0r
r r r r

φ φ
θ

⎛ ⎞∂ ∂ ∂⎟⎜ + =⎟⎜ ⎟⎜⎝ ⎠∂ ∂ ∂
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2. Now, let .  The equation reduces to ( ) ( ) ( ),r R r Tφ θ θ=

 

 
2

2
2

1r d dR d Tr k
R dr dr T dθ

⎛ ⎞⎟⎜ = − =⎟⎜ ⎟⎜⎝ ⎠  

 

3. For periodicity in θ  choose k  implying that  n n= ± ( )expT i θ= ±
4. The corresponding radial solutions are .   nR r ±=

5. The general solution can thus be conveniently written as 

 

 ( ) ( ), n n
n nr a r b r θφ θ

∞
−

−∞
= +∑ ine  

 

Separation of variables in a 2-D ( ),r z  cylindrical geometry 

 

1. For this geometry Laplace’s equation reduces to 

 

 
2

2

1 0r
r r r z

φ φ⎛ ⎞∂ ∂ ∂⎟⎜ + =⎟⎜ ⎟⎜⎝ ⎠∂ ∂ ∂
 

 

2. Let .  Separation of variables yields ( ) ( ) ( ),r z R r Z zφ =
 

 
2

2
2

1 1d dR d Zr k
rR dr dr Z dz

⎛ ⎞⎟⎜ = − =⎟⎜ ⎟⎜⎝ ⎠  

 

3. For a geometry which has periodic boundary conditions in z  over a length 

, we need to set L ( )22 2 /nk n Lπ= .  The general solution is then given by 

 

 ( ) ( ) ( )0 0, nik z
n n n nr z a I k r b K k r eφ

∞

−∞

⎡ ⎤= +⎣ ⎦∑  

  

 where  are modified Bessel functions. 0,I K0
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4. For a geometry with a perfect conductor at r  we set a= ( )22 /n nk aα= −  

where ( )0 0nJ α = .  The general solution is 

 

  ( ) ( )0, n nk z k z
n nr z a e b e J k aφ

∞
−

−∞

⎡ ⎤= +⎣ ⎦∑ n

 

5. These two solutions show that there are a variety of options in choosing 

the expansion functions for separation of variables.  The key point is to 

very, very, carefully examine the geometry and the form of the boundary 

conditions before choosing the appropriate form of separation functions. 

6. For example, how would you choose the separation functions for the slab 

problem below? 

 
Separation of variables in a 2-D spherical geometry with polar symmetry 

 

1. In a spherical geometry with polar symmetry Laplace’s equation has the 

form 

 

 2
2 2

1 1 sin 0
sin

r
r r r r

φ φθ
θ θ θ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎟ ⎟⎜ ⎜+ =⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂
 

 

2. We let ( ) ( ) ( ),r R r Tφ θ θ= .  Then Laplace’s equation becomes 

 

 2 21 1 sin
sin

d dR d dTr k
R dr dr T d d

θ
θ θ θ

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜= − =⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠  

 

3. Recall that in spherical geometry . 0 θ π≤ ≤
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4. We now let  and .  The T  equation becomes cosζ θ= sindζ θ= − dθ

 

 ( )2 21 0d dT k T
d d

ζ
ζ ζ
⎡ ⎤
⎢ ⎥− + =⎢ ⎥⎣ ⎦

 

 

5. For periodic solutions to exist we must choose 

( )2 1   0,1,2, 3...k n n n= + =   For this choice it follows that ( )nT P ζ=  

where  is the Legendre polynomial. nP

 

 
( ) ( )

( )

2 3
0 1 2 3

2

1 11 3 1
2 2

1 1
2 !

n
n

n n n

P P P P

dP
n d

ζ ζ ζ

ζ
ζ

= = = − = −

= −

5 3ζ

os

 

 

6. The R  solutions are . 1,n nR r r− −=

7. The general solution is thus given by 

 

  ( ) ( ) ( )1

0

, cn n
n n nr a r b r Pφ θ θ

∞
− −= +∑

 

Separation of variables in a 3-D cylindrical geometry 

 

1. The last geometry of interest corresponds to a 3-D cylinder.  Laplace’s 

equation has the form 

 

 
2 2

2 2 2

1 1 0r
r r r r z

φ φ φ
θ

⎛ ⎞∂ ∂ ∂ ∂⎟⎜ + +⎟⎜ ⎟⎜⎝ ⎠∂ ∂ ∂ ∂
=  

 

2. Assume now that ( ) ( ) ( ) ( ), ,r z R r T Z zφ θ θ= .  Separation of variables is a 

little tricky here.  Rewrite Laplace’s equation as  
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2 2 2

2 2

1 0r d dR r d Z d Tr
R dr dr Z dz T dθ
⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥+ +⎟⎜ ⎟⎜⎢ ⎥⎝ ⎠⎣ ⎦

=  

 

3. Assume the system is periodic in both θ  and z  (over a length L ).  Then 

choose the separation constants as follows 

 

 

2
2

2

22
2

2

1

1 2
n

d T m
T d

d Z nk
Z dz L

θ
π

= −

⎛ ⎞⎟⎜= − = − ⎟⎜ ⎟⎝ ⎠

 

 

4. The T  and Z  solutions are given by 

 

  
n

im

ik z

T e

Z e

θ=

=
 

5. The R  equation becomes 

 

 
2

2
2

1 0n
d dR mr k

r dr dr r
⎛ ⎞⎛ ⎞ ⎟⎜⎟⎜ − + =⎟⎜⎟⎜ ⎟⎟⎜ ⎟⎜⎝ ⎠ ⎝ ⎠

R  

 

6. The solution is again modified Bessel functions 

 
 ( ) ( ),m n m nR I k r K k r=  

 

7. The general 3-D solution can now be written as 

 
 ( ) ( ) ( )

,

, , nim ik z
mn m n mn m n

m n

r z a I k r b K k r e θφ θ +⎡ ⎤= +⎣ ⎦∑  
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2. The mathematical statement of the problem is as follows 

 

 
( )

( ) ( )

( )

2

0

0

, 0

0, , 0

, 0

x V

y L y

x

φ

φ

φ φ

φ

∇ =

=

= =

∞ =

 

 

3. From our earlier analysis we recall that the general solution for a 2-D slab 

system can be written as 

 

 ( ) ( ), n nk y k y ik x
n nx y a e b e eφ

∞
−

−∞
= +∑ n  

 

4. We will see shortly that we have made the right choice in having 

oscillatory solutions in  and exponential solutions in y . x

5. Focus first on determining the  which make the solution satisfy the 

boundary conditions on the vertical plates.  This can be easily done by 

extending the x  domain from 0  to  as shown below.  

Also assume the potential at  has form illustrated. 

nk

x L≤ ≤ L x L− ≤ ≤

0y =
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Problem 1 

1. Consider the slab problem illustrated below 



6. Note that in the region  the potential coincides with the 

specified boundary condition. 

0 x L≤ ≤

7. Since the boundary condition in the expanded region has odd symmetry 

the solution for φ  can be written as a sine series 

  

( ) ( )
1

, sn nk y k y
n n

n

x y a e b e k xφ
∞

−

=
= +∑ in n  

 

 where the  are given by nk

 

 n
nk
L
π=  

 

8.  This choice automatically guarantees that ( ) ( )0, , 0y L yφ φ= = . 

9. Next, note that the boundary condition ( ),xφ ∞ = 0

in

 requires that . 0nb =

    10. At this point the solution is given by  

 

  ( )
1

, snk y
n n

n

x y a e k xφ
∞

−

=
= ∑

 

11. The last boundary condition requires that ( ) ( ), 0 sinn nx V x a kφ ≡ = ∑ x .  

The  can be easily found by Fourier analysis.  We multiply by 

.  The separate terms are evaluated as follows. 
na

sin mk x dx∫
 

 
( ) ( )0

0
0

2sin 2 sin 1 cos

sin sin

L L

m
L

L

m n
L

m x LVV x k x dx V dx m
L m

n x m x dx L
L L

π π
π

π π δ

−

−−

= = −

=

∫ ∫

∫
 

 

12. After equating the terms we find that 

 

 ( )02 1 cosm
Va m

m
π

π
= −  
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( ) 0

( )

4 si,
nk y

n

n odd

V e kx y
n

φ
π

−

= ∑ n x  

 

14. A sketch of the solution is shown below. 

 
15. For this special case the series can actually be summed to a simple closed 

form as follows 

 

 

( )/
0

( )

( )/0

( )

0

10

4 Im

4 Im            

4 1 1Im ln
2 1

2 sin /tan
sinh /

in x iy L

n odd

n
in x iy L

n odd

V e
n

V z z e
n

V z
z

V x L
y L

π

π

φ
π

π

π
π

π π

+

+

−

=

= =

+⎛ ⎞⎟⎜= ⎟⎜ ⎟⎝ ⎠−
⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠

∑

∑
 

 

Problem 2 

 

1. Let’s redo the problem of the point charge outside the conducting sphere 

which we previously solved by the methods of images. 

 

 ( )2

0

          0Sρφ φ
ε

∇ = − =  
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13. The complete solution is given by 



 

 
2. To solve we first transform Poisson’s equation into Laplace’s equation by 

the following substitution 

 

 ( ) ( ) 2 2 2

0

, ,      2 cos
4

qr r l r d
l

φ θ φ θ θ
πε

= + = + − dr  

 

3. The function φ  satisfies 

 

 ( )
( )

( )

2

1/22 2
0

0

1,
4 2 cos

, 0    

qa
a d ad

φ

φ θ
πε θ

φ θ

∇ =

= −
+ −

∞ =

 

 

4. The general 2-D spherical solution is given by 

 

 ( ) ( )
1

0

, c
n n

n n n
r rr a b P
a a

φ θ θ
− −∞

os
⎡ ⎤⎛ ⎞ ⎛ ⎞⎟ ⎟⎢ ⎥⎜ ⎜= +⎟ ⎟⎜ ⎜⎟ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑  

 

5. We must set  for regularity at ∞ . 0na =
6. The boundary condition on the surface requires that 

  

( ) ( )
( )1/22 2

0 0

1,     
4 2

n n
qa b P

a d ad
φ θ ζ ζ θ

πε ζ

∞

= = − =
+ −

∑ cos  
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 ( ) ( )
1

1

2
2 1m n mP P d
m

ζ ζ ζ δ −−
=

+∫ n  

 

8. We multiply the φ  equation by ( )mP dζ ζ∫ . 

9. Then  

 

 
1

10

2
2 1n m n

n

b P P d b
m

ζ
∞

−=
=

+∑ ∫ m  

 

10. And 

 

 

( )
( )

1

1/22 21
0

0

2 1
2 4 2

4

m
m

m

Pm qb d
a d ad

q a
d d

ζ ζ
πε ζ

πε

−

⎛ ⎞+ ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜⎝ ⎠ + −

⎛ ⎞⎟⎜= − ⎟⎜ ⎟⎝ ⎠

∫
 

 

11. The complete solution is given by 

 

 

( )
( )

( )

1/22 2
0

1

00

1,
4 2 cos

cos
4

n n

n

qr
r d dr

q a a P
d d r

φ θ
πε θ

θ
πε

+∞

=
+ −

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜− ⎟ ⎟⎜ ⎜⎟ ⎟⎝ ⎠ ⎝ ⎠∑
 

 

12. This form is not as convenient as the image solution. 

13. However, it is the correct solution and shows how separation of variables 

works. 
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7. The  are found using the orthogonality condition nb


