
Lecture 8 

Low Frequency Maxwell’s Equations 

Today’s topics 

1. New topic – low frequency Maxwell’s equations 

2. Simple derivation of Faraday’s law 

3. Examples

a. Circuit equation for a solenoid 

b. Resistive diffusion 

c. The skin effect 

d. Transformers

Faraday’s law 

1. Up until now we have been considering only steady state problems: electrostatics 

and magnetostatics. 

2. For these cases ./ 0t =

3. Today we will allow time dependence, but only “slow” time dependence. 

4. What do we mean by slow? We consider non-relativistic situations which have 

Galilean invariance, not Lorentz invariance. 

5. What are the main modifications to Maxwell’s equations for “slow” variation? 

6. The static and dynamic equations can be compared as follows. 

0 0

0 0

Static                             Dynamic

0                         0

/                     /

0                        
t

× = × =

= =

= =

× = × =

B J B J

B B

E E

BE E

7. The addition of  in Faraday’s law is the only change. / tB

8. At first glance, there would appear to be a problem here – charge is not 

conserved.
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9. The reason is that 0=J  from Ampere’s law.  But if ( ),t= r  for a time 

varying problem then there is a problem satisfying 

0
t
+ =J

10. We return to this problem later. 

Derivation of Faraday’s law 

1. A simple derivation is presented here of Faraday’s law. 

2. What basic information and principles do we need? 

a. The Lorentz force on a charge: ( )q= + ×F E v B
b. The magnetic field is divergence free: 0=B
c. Galilean invariance: The force is independent of reference frame 

3. Now consider two experiments as shown below 

4. In case I a loop of wire moves with a velocity  towards a stationary solenoid.  It 

experiences a force 

v

IF

5. In case II the loop is stationary but the solenoid moves.  The loop experiences a 

force .IIF

6. By Galilean invariance .I IF F= I

7. Now let’s calculate the forces and equate them. 
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8. In case I the electric field is zero in the laboratory frame: .0=E

a. There is a force on the electrons in the loop due to their motion 

b. The  force generates a  directed current in the wire. ×v B

c. The line integrated force around the loop is given by

  (in the  direction)I Z RF e d e v B Rd= × =v B l

d. Now, the  is related to the change in flux passing through the 

coil in a time .

d×v B l

t

e. Using the conservation of flux relation implied by  we can 

calculate this change in flux by evaluating the amount of flux leaving from 

the side of the cylindrical trajectory as shown below. 

0=B

( ) ( )0  (flux leaving the side)sidet =
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( )side dS d t

t d

= = ×

= ×

B n B l v

v B l

f. Therefore, we see that  

IF d d
e dt
= = ×v B l

9. Consider now case II where  for the loop but the solenoid is moving.  If the 

loop is to feel the same force as in case I there must be an induced electric field 

.

0=v

E=E e

a. This electric field produces a force equal to  on each electron. eE

b. This implies that the line integrated force around the loop is given by 

IIF e= dE l

c. Also by symmetry, the change in flux passing through the coil is the same 

in both cases 

II It t
=

d. Equating the forces and taking the limit of an infinitesimal time increment 

 we see that ( t dt)

dd
dt

=E l

10. Recall that dS= B n
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11. This leads to the integral form of Faraday’s law. 

d d
t

= SBE l n

12. The differential form is obtained using Stokes’ theorem d d= × SE l E n .

0        dS
t t

× + = × =B Bn E E

13. This is Faraday’s law.  It relates the change in magnetic flux to an induced 

electric field. 

What about the conservation of charge? 

1. The problem is resolved by introducing the scalar and vector potential as follows. 

2. ( )0            ,t= = × =B B A A A r
3. Faraday’s law becomes 

     0
t t

× = × + =B AE E

4. Therefore, Faraday’s law is always satisfied if we write the electric field as 

t
= AE

5. At present ( ),tr  is an arbitrary unspecified scalar function. 

6. Let’s see what this representation implies about Ampere’s law and Poisson’s 

equation. 

7. From Ampere’s law ( ) we see that  0× =B J

0

0=

× × =

J

A J
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8. From Poisson’s equation ( ) we see that  0/=E

2

0t
=A

9. These relations must be compatible with conservation of charge 

( )0     0      
t t

+ = = =J r

10. These constraints can be simultaneously satisfied by choosing 

( ) ( )

( )

,

0

,

t

t

=

=

r r

A

A A r

11. The magnetic field can be time varying.  The electric field is made up of a time 

varying inductive component and a DC electrostatic component.  

12. The low frequency Maxwell’s equation become 

( ) ( ) ( ) ( )

2
0 0

0

,  and ,                       ,  and 

0                                   

                               

         

t t t

t t

= = ×

× = =

× = =

=

E r B r A r r

B B

B AE E

B J A J

E

A

2

0

                        =

13. When no free charges are present (i.e. ) we can work directly in terms of 

and  or alternatively in terms of A .

0= E

B
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Application to a solenoid 

1. Consider a simple solenoid driven by a time varying voltage. 

2. The goal is to derive the circuit equations starting with the low frequency 

Maxwell’s equations. 

3. The first step is to use the integral form of Faraday’s law by integrating through 

a loop passing through the center of the wire. 

4. The electric field contribution is evaluated as follows. 

( )

( )2

2

2

2

wire gap

gap

wire wire

d d d

d V t

Id d Jl Na
d

NaR N
d

= +

=

= = = =

=

E l E l E l

E l

E l J l RI

5. The flux contribution is evaluated as follows. 

( )20

2 2
20

coil

d d d NI ddS a N L
dt dt dt h dt

N aL N
h

I= = =

=

B n

6. The circuit equation becomes 

dIV RI L
dt

= +
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Application to magnetic diffusion 

1. Magnetic diffusion is an interesting and slightly tricky problem.   

2. The goal is to calculate how long it takes for a magnetic field to diffuse through a 

material with finite conductivity.  The problem of interest is shown below. 

3. The tricky part is as follows.  From dimensional analysis it always follows that 

the diffusion time scales as  where D  is the diffusion coefficient.  This 

problem has two length scales, a  and d .  Which ones appear in the diffusion 

time?

2 /L D

4. In formulating the problem, note that when the voltage is switched on the field 

instantaneously fills the vacuum region between the solenoid and the conductor. 

5. Thus, at r a  we know that .  This is the 

boundary condition. 

d= + ( ) 0, /zB a d t I l B+ = 0

6. In terms of initial conditions, the fields inside the conductor and the hole start 

out at zero values. 

( )

( )

    , 0 0     the conductor

0           , 0 0     the hole
z

z

a r a d B r

r a B r

< < + =

< < =

7. The jump conditions across both r  and r a  require that a= d= + 0zB =  and 

.0E =
8. How should we approach this problem? We know the BC on the outside of the 

conductor.  We shall first solve for the field in the hole since this is a vacuum 

region and thus should not be too difficult.  This will give us BCs on the inside 
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surface of the conductor.  Finally we formulate the problem in the conductor and 

then try to solve this problem, which is the most difficult step. 

9. In the hole, by symmetry we see that ( ) ( ), ,ht B r t=B r ez .  From Ampere’s law 

 it follows that  or 0× =B / 0hB r =

( ) ( ),      constant in space, varying in timeh hB r t B t=
10. Faraday’s law gives the following information. 

( ) ( )        , =  z
h

E B E r t B t r
t r t

× = =BE

11. At the surface of the conductor ( ) ( ) ( ) ( ), , ,z h hB a t B t E a t B t a= =

12. At this point  is unknown.  We want to learn how long it takes the field to 

diffuse in so that .
hB

0hB B

13. Let’s turn to the conductor.  We write .  Maxwell’s equations reduce to 1/=

( )

0 0 0      

1              

z

z

B E
r

BrE
t r r

× = = =

× = =

B J E

BE
t

14. Eliminate  using the first equation E

15. This leads to a diffusion equation for the magnetic field 

0

1        Diffusion coefficientz zD B Br D
r r r t

= =

16. To solve this equation we need one initial condition and two boundary 

conditions.  Two conditions are easy. 

( )

( ) 0

, 0 0            Initial condition

,      Outer boundary condition
z

z

B r

B a d t B

=

+ =

17. The inner boundary condition is a little trickier.  We need to use the jump 

conditions.  Recall that in the hole, ( ) ( ), hE a t B t a= .  The jump conditions 
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imply that in the conductor ( ) ( ),z hB a t B t=  and ( ) ( ), /z a
E a t D B r= .

The boundary condition in the conductor becomes 

( ) ( ), ,z zB a t B a tD
t a r

=

Solving the diffusion equation 

1. How do we solve this complicated equation? We can make life a little simpler by 

assuming the conductor is thin: d .  This converts the configuration into a 

slab geometry.  We then solve using the Laplace transform which is an excellent 

technique for solving linear initial value problems. 

a

2. In the slab limit we let .  Then  0r a x x d d a= + < <

2 2

2 2

1 1 1z z z z zB B B B Br
r r r r r r x a x x x

= + = +
+

2

2
zB

3. The problem reduces to

( )

( )

( ) ( )

2

2

0

, 0 0

,

0, 0,

z z

z

z

z z

B BD
t x

B x

B d t B

B t B tD
t a x

=

=

=

=

4. Introduce the Laplace transform ( ) ( )
0

, pt
zb x p e B x t dt= , .  The equation for 

 is given by ( ,b x p)

( )

( ) ( )

2

2

0
0

0

0

0 0

pt

b p b
x D

Bb d B e dt
p

b ap b
x D

=

= =

=
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5. The solution is easily found as follows. 

( ) ( )

2
1 2

0
1 2

2
1 2 1 2

      /

BC-1:     

BC-2:     

sx sx

sd sd

b c e c e s p D

B c e c e
p
s c c s a c c

= + =

= +

+ = +

6. Solve for the coefficients 1 2,c c

( ) ( )

( ) ( )

0
1

0
2

1
1 1

1
1 1

sd sd

sd sd

B sac
p sa e sa e
B sac
p sa e sa e

=
+ +
+=
+ +

7. Find the field at  (i.e. r ) and see how long it takes to diffuse in. 0x = a=

( )
( ) ( )

0
1 2

2 10
1 1sd sd

Bb c c
p sa e sa e

= + =
+ +

8. Now what?  To find  we have to invert this complicated Laplace transform.  

Recall that .

( )hB t
2 /s p= D

9. We can obtain a simple approximation valid for large time.  The solution for 

 is obtained by taking the limit  in the transform. t 0p

10. Note:

( ) ( ) ( ) ( ) ( )2 2 21 1 2 2 /2 2 1 2 1 /sd sdsa e sa e s ad d s ad adp D+ + + + + = + .

11. This leads to 

( ) 0
0

0

1 1 10
1 / 1/

p
D

D

B Db B
p adp D p p ad a

= = =
+ +

1
d

12. This transform can be easily inverted 

( ) ( )/
0 1 Dt

hB t B e=
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13. We see that the diffusion time is  and its geometric scaling depends on the 

product ad
D

Application to the skin effect 

1. The goal here is to calculate the power dissipated in a conductor when an AC 

voltage is applied. 

2. We consider the same geometry as before but assume the step function in  is 

replaced by a sinusoidal signal. 
zB

3. The boundary condition on the outer surface of the conductor becomes 

( ) 0, i t
zB a d t B e+ =

4. We again consider the thin wall limit for simplicity: d a .

5. We also focus on sinusoidal steady state.  This means we can ignore the initial 

transients and assume all quantities vary like .( ) ( ), i tQ x t Q x e=
6. The model reduces to 

( )

( ) ( )

2

02

0

0

0

0 0

z
z

z

z
z

B i B
x
B d B

B i B
x

+ =

=

=

7. The general solution is given by 

/ / 2
1 2 0     / /x x

zB c e c e i iD= + = =

8. Apply the boundary conditions 

( ) ( )

/ /
1 2 0

1 2 1 22

1

d dc e c e B

ac c c c

+ =

+ = +

12



9. Solve for 1 2,c c

( ) ( )

( ) ( )

1 0 / /

2 0 / /

d d

d d

ac B
a e a e

ac B
a e a e

=
+ +
+=
+ +

10. Now lets calculate E  and the rms power dissipation density 

( ) ( ) 21/2 * 1/2P E= =E J  as a function of x

( )

( ) ( )
( ) ( )

/ /
1 2

0 0

/ /
0

/ /
0

1 1 x xz

x x

d d

BE c e
x

a e a eB
a e a e

= = +

+ +=
+ +

c e

11. Now consider the low frequency limit .  This is nearly DC. d

( )

0 0
2

0 0

2

0

2
3 2

2 3 2 20 0
2 02 2 2

0 0

2
2

12
2

d

D

B a B aE

P P d aL E dx

B a La dBaL d LB a d

=

= =

= =

r

12. Next consider the high frequency limit where there is a strong skin effect: .d

13



[ ]0

0
2

2 1/20
3/2 20

0

exp ( )/

12
2 2

d

D

BE d x

aLBP aL E dx=

13. The power dissipated with a strong skin effect is in general much larger.  The 

reason is that all the power is now dissipated in a thin layer which has a much 

higher effective resistance. 

( )
( )

2 4
2

2 4
1

large 1
small 

D

D

P a d
P d d

14. The result is not completely transparent since in the second case more of the 

current flows in the inductive part of the circuit and less in the resistive part, 

even though the resistive part flows in a thin layer. 
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