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Common Misconceptions

• It’s just a “bunch” of numbers
• Just give me the right value and stop 

changing it.
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Theoretical model
• Computer code SAMMY

– Used for analysis of neutron and charged particle cross-section 
data

– Uses Bayes method to find parameter values
• Generalized least squares

– Uses R-matrix theory to tie experimental data to theoretical 
models

• Reich-Moore approximation
• Breit-Wigner theory

– Treats most types of energy-differential cross sections
• Treats energy and angle differential distributions of scattering

– Fits integral data
– Generates covariance and sensitivity parameters for resolved 

and unresolved resonance region



Three energy regions

• Resolved resonance range
– Experimental resolution is smaller than the 

width of the resonances; resonances can be 
distinguished.  Cross-section representation 
can be made by resonance parameters

– R-matrix theory provides for the general 
formalism that are used



• Unresolved energy range
– Cross-section fluctuations still exist but experimental 

resolution is not enough to distinguish multiplets.  
Cross-section representation is made by average 
resonance parameters

– Formalism
• Statistical models e.g. Hauser-Feshbach model combined 

with optical model
• level density models, ….
• Probability tables



The Unresolved Resonance Range (URR)

Energy range over which resonances are so narrow and close together that they cannot 
be experimentally resolved.
A combination of experimental measurements of the average cross section and 
theoretical models yields distribution functions for the spacings and widths.
The distributions may be used to compute the ‘dilute-average’ cross sections:
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l = orbital angular momentum quantum no., J = spin of the compound nucleus
k = wave number, Jg  = spin statistical factor, lϕ = phase shift

n, ,l JΓ , , ,l JγΓ , f , ,l JΓ , ,l JΓ = neutron, capture, fission, and total widths

,l JD = resonance spacing, L denotes averaging over the distribution(s)
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The Probability Table Method

- Concept developed in the early 1970s by Levitt (USA) and Nikolaev, et al. (USSR).
- Uses the distributions of resonance widths and spacings to infer distributions of
  cross section values.
- Basic idea:
	 - Compute the probability pn that a cross section in the URR lies in band n
	   defined as
	 - Compute the average value of the cross sections (σn) for each band n.
	 - Following every collision (or source event) in a Monte Carlo calculation for
	   which the final energy of the neutron is in the URR, sample a band-averaged
	   cross section with the computed probabilities and use that value for that neutron
	   until its next collision.

σn-1 < σ    σn.^ ^
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Mathematical Theory of the Probability Table Method

t ( , )p E dσ σ ≡ probability that the total cross section lies in dσ about σ at energy E
Average total cross section: t t( ) ( , )E d p Eσ = σσ σ∫
Band probability: 
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dσ′ about σ′ given that the total cross section has the value σ
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Unfortunately, computing t ( , )p Eσ and ( , )q Eα ′σ σ directly is an intractable problem.
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- Use ENDF/B parameters to create probability distribution functions (PDFs) for resonance widths
   (Wigner distribution) and spacings (chi-squared distributions).
- Randomly sample widths and spacings from PDFs to generate 'fictitious' sequences (realizations)
   of resonances about the energy E for which the table is being created.
- Use single-level Breit-Wigner formulae to compute sampled cross section values at E:

             = tabulated background cross section,  
                           = neutron, capture, fission and total widths for resonance r
RlJ = set of sampled resonances for quantum number pair (l,J)

Monte Carlo Algorithm for Generating the Tables
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- Use the sampled cross sections to compute band averages and probabilities.
( )2r r rX E E≡ − Γ
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• High energy region
– No cross-section fluctuations exist.  Cross-

sections are represented by smooth curves.
– Formalism

• Statistical models e.g. Hauser-Feshbach
• Intra-nuclear cascade model
• Pre-equilibirum model
• Evaporation model



Cross section
processing methods

Cross section
measurements

Cross section
evaluation

Cross section
processing

Point data libraries Multigroup libraries

Sensitivity and uncertainty analyses

Cross sections for user applications

Transport methods Cross section
processing methods

Data testing using transport methods
and integral experiments
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ORELA
• High flux (1014 n/s)
• Excellent Resolution (Δt = 2-30 

ns)
– faciliates better evaluations

• “White” neutron spectrum from 
0.01eV to 80 MeV
– Reduces systematic 

uncertainties
• Measurement systems and 

background well understood
– Very accurate data

• Simultaneous measurements in 
different beams lines

• Measurements performed on 
over 180 isotopes

Figures removed due to copyright restrictions.



ORELA Target

• High energy electrons 
hitting a tantalum 
target produce 
bremsstrahlung
(photon) spectrum.  
Neutrons are 
generated by 
photonuclear 
reactions, Ta(gamma, 
n), Ta(gamma, 2n), …

Figure removed due to copyright restrictions.



Bayesian Inference

• Bayesian inference is statistical inference 
in which evidence or observations are 
used to update or to newly infer what is 
known about underlying parameters or 
hypotheses.



Cost of evaluations
Assumptions (for single 3GHz PC):

400 nuclides

50 parameters/nuclide

Single model calculation (1 nuclide
up to 20 MeV - 20 min)

Benchmark sensitivity to a single
parameter 500 min

Full library benchmark
400 000 min

Model calculations:
400 X 50 X 2 X 20 = 800 000

Benchmark parameter-sensitivity:
400 X 50 X 2 X 500 = 20 000 000

Library Benchmarking:
400 000

Total:
~ 21 000 000 min = 40 years

Single iteration (min):

1 iteration per week - 2100 CPU's
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Covariance Matrix

• The covariance matrix or dispersion matrix 
is a matrix of covariances between 
elements of a random vector. It is the 
natural generalization to higher 
dimensions of the concept of the variance 
of a scalar-valued random variable.

E[(X1 - µ1) (X1 - µ1)]   E[(X1 - µ1) (X2 - µ2)]          E[(X1 - µ1) (Xn - µn)]. . .

E[(X2 - µ2) (X1 - µ1)]   E[(X2 - µ2) (X2 - µ2)]          E[(X2 - µ2) (Xn - µn)]. . .

E[(Xn - µn) (X1 - µ1)]   E[(Xn - µn) (X2 - µ2)]          E[(Xn - µn) (Xn - µn)]. . .

..
.

..
.

..
. . . .
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• Each type of data comes from a separate 
measurement
– Cross-sections are measured independently
– However, the various types are highly interrelated

• Data include measurement-related effects
– Finite temperature
– Finite size of samples
– Finite resolution
– …

• Measured data may look very different from the 
underlying true cross-section
– Think Doppler broadening



Advantages of evaluated data
• Incorporate theoretical understanding

– Cross-section shapes
– Relationships between cross-sections for different 

reactions
• Incorporate all available experimental data and 

all available uncertainty
• Allow extrapolation

– Different temperatures
– Different energies
– Different reactions



• Generate artificial “experimental” points 
from ENDF resonance parameters
– Include Doppler and resolution broadening

• Make reasonable assumptions regarding 
experimental uncertainties
– Statistical (diagonal terms)
– Systematic (off-diagonal terms)

• Normalization, background, broadening, …



• Run models with varying resonance 
parameters with an assumed distribution

• Include systematic uncertainties for 
measurement-related quantities

• Perform simultaneous fit to all data
– All experimental uncertainty is thus 

propagated



Computational cost

• Large cases require special care
– U-235 has ~3000 resonances

• 5 parameters for each resonance need to be 
varied

• Very time consuming
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