Resonance Theory



Basics

* Deals with the description of nucleus-
nucleus interaction and aims at the
prediction of the experimental structure of
Cross-sections

e |Interaction model which treats the nucleus
as a black box

— Potential iIs unknown so models cannot
predict accurately

— Only care at what can be observed before
and after a collision



R-matrix theory

Introduced by Wigner and Eisenbud (1947)

Requires no information about internal structure
of the nucleus

It is mathematically rigorous

— Usually approximated

— Most physical and appropriate of resonance
framework

Cross-sections are parametrized in terms of
— Interaction radii & boundary condition

— Resonance energy & widths

— Quantum number (angular momentum, spin, ...)



Why bother?

* Couldn’t we just use the measured data?

— Too much information, too little understanding

 X.S. vs energy would requires 100,000’s of
experimental points

« Angular distributions would require even more

— Need for extrapolation
« Different energies
 Temperature changes
« Geometry considerations (self-shielding, ...)
« Unstable or rare nuclides



R-matrix theory Assumptions

Applicability of non-relativistic quantum mechanics

Unimportance of processes where more than two
product nuclei are formed

Unimportance of all processes of creation or destruction

Existence of a finite radial distance beyond which no
nuclear interaction occurs

Based on the notion that we can describe accurately
what's far enough from the compound nucleus but not
what's inside



Definition

« R-matrix is called a channel-channel matrix

« Channel

— Designates a possible pair of nucleus and particle
and the spin of the pair

— Incoming channel (c)

— Outgoing channel (c’)

— Defined by pair of particles, mass, charge, spin
« Many possible channels exist



Compound Nucleus

@ Vv

: Inside r >a
we do not
know what

Incident Channel happens
Outside r >a there
iIs no interaction
(except Coulomb)
Some channels can be , o
both incident and exit. e
Others are exit only (e.g., L
fission fragments). Exit Channel
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* Incoming channel (c)

— We can control the incoming channel by the
way we set up the experiment
* Neutron energy
e Target

* Qutgoing channel (c’)

— We can observe the outgoing channel with
precise measurement



Total spin of the channel

e spin quantum numbers Each of these also has
an associated parity.

— (Note unprimed = incident, primed = exit):

— i = intrinsic spin of incident particle = "z for neutron | +1 for neutron

— I'=spin of target nuclide = integer or "z -integer | ;

— [ = relative orbital angular momentum (s, p, d, f, ...) (1=0,1, 2, 3,...)
— s=channel spin s=1+i |(+1) () (-1)

— J=total spin for channel j_3.7 |(+1) (x) (-1)

e Required: conservation of spin and parity
— (spin of incident channel =J7* =J’ = = spin of exit channel)



Angular momentum addition rules

(for those unfamiliar with vector algebra)

If vector spin ¢ is given by
i=b+7¢
then a (the magnitude of ) @ is within the limits
M—dSasb+c
and « is either integer
(if » and c are both integer or both half-integer)

or half-integer

(if one of 5 and c is integer and the other half-integer)
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Cross-section

* In 22.101, you used the phase shift theory
to determine an expression for the
scattering cross-section

— This expression can be defined in terms of the
collision matrix U

6 = (n/k2)sin2s = (n/k2)1-UI2

— Different relations between x.s and U exist for
other interaction type



Goal of R-matrix

* Phase shift theory requires knowledge of the
potential V(r)
— Approximated by square well

* R-matrix theory builds a relationship between a
matrix R that depends only on observable,
measurable quantities and the collision matrix
— Bypasses the need for the potential
— Requires experimental data

« We will derive a simplistic case of a neutron
Interaction with no spin dependence



R-Matrix Derivation

« Start with the steady-state Schrodinger
equation with a complex potential

(— s V2+V) w=Ey
2m .

— Eigenvalue problem

* The wavefunction is expressed in the form

of partial waves T ok
y(r.cos0) = > ~=—=P(cosb)

e




 In radial geometry, the moment is a
solution of the following equation
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« Additionally, the moment can be
represented by an expansion in terms of
the eigenvectors of the solution

d,(E.7) =;AH¢I(EJ_,1') .

— Eigenvectors are also solutions of the above
equation



* Eigenvectors are also a solution of:

I(I+1)A2

2mr?

E -W(r) -

i }d),(El,r) 0.

@ a3

* Boundary conditions
— Both equations must be finite atr =0

— Logarithmic derivative at nuclear surface is
taken to be constant (where B, Is real)

do,(E,,r)
dr

l =a'B,9(E,.a) ,



* The eigenvectors form a basis set, If

normalized properly, they have the
following property:

f O(E, ) PLE, P dr=38,, .
0

— They form an orthonormal basis set

* From this condition, the expansion
coefficients can be defined as:

A4, = fd}I(El,r) O(Er)dr .



Our goal Is to eliminate the potential V(r)

— Multiply eq (1) by the eigenvector and multiply
eq (2) by the moment

— Subtract resulting equations
— Integrate between 0 and a

— Result: Gives an expression for &,(E,7) (E.r)

« Which can be used to find the expansion
coefficients

dq}}(E A ,?' )

rF=a

2 dd(E,r)
A = Jzﬁ_m(Ej, _E)_l ¢;(E;_:r) q}i_ - d);( r)



* We can now find an expression for the
moment atr = a

G(E,,a)P(E,,a)
E,-E

dd),(E a)

¢,(E,a) = —E o

-B,O(E/r)

r=a

« Where we can extract a definition of the R-

matrix
d[(E,.,a)D(E,.a)

El_E

R=—0o
Zma;

* Or more commonly

YarYas
R,= , Ys; ¢(E,,a
I ? E,-E M \JZmﬂ (E) -




— v, 1S the reduced width amplitude for level A
and angular momentum |

— A Is the resonance
— E, Is the energy at the resonance peak

—v,/S and E;’s are unknown parameters and
can be evaluated by observing measured

cross-sections
* E, Is the energy value at the peak
* 7, 1S @ measure of the width of the resonance at a certain
amplitude for the nuclei at rest
— Related to the more common I" through a matrix transform

— Not easy to measure because of temperature effects (Doppler)
— Usually inferred from the resonance integral



General Form




Advantages/Disadvatages of
R-matrix theory

« Disadvantages
— Matrix inversion is always required
— Channel radii and boundary condition appear arbitrary

— Difficult to accommodate direct reactions (i.e.
potential scattering)

« Advantages

— Channel radii and boundary condition have natural
definitions which makes them appealing

— Reduced width concept has an appealing relation to
nuclear spectroscopy



Boundary conditon

In the early days, there was much confusion in the
choice of channel radii and boundary condition
— This topic has been debated heavily over the last 40 years!
— Early papers described their choice as arbitrary
— Optical model has facilitated the choice of these parameters

“Natural” choices exist

— Described in more details in pdf R-matrix theory (2)

— B, must be kept real to preserve the nature of the eigenvalue
problem

— Choice of boundary condition is to set it equal to the shift
function at some point in the energy interval of measurement.
» Keep only real part of the logarithmic derivative of the outgoing
wave

— Matching radii usually selected based on square-well interaction



Relation with collision matrix

* We found an expression for the solution of the
wavefunction that doesn’'t depend on the
potential

— Depends on R-matrix
— R-matrix depends on experimentally measured data
« Total wave function in region outside nuclear

potential interaction can be expressed as a

linear combination of the incoming and outgoing
waves

b4r) =C o) - U6 forr > a,



 From R-matrix analysis, we found

d(E,,a)
d)j(E:H) =|r I;rl _Bde}(E:r) R; »
« \WWe can then find that
e
inc 1= (I::"c i:’ _Bj RI
o )
P ray = di; -B,| R,
.k (bf / F=a




* Defining

L'=| = ./ I
¢?Ht Gb. r=a
* We get
U,= b
).,

| o odd
LI_ ine dr
d;

1 _(LI* _Bl)r=a ‘RI

1-(L;-B),, R, |

r

=a



General form

U=p"2,,[I-R(L-B)| [-RIL-B)],,.p7" .

* No approximation has been made
— Exact representation between U and R



L evel matrix

 The R-matrix is fairly small but fairly
complex to built

* Wigner introduced a clearer representation
called the A-matrix whose elements
correspond to energy levels

— AIs much larger
— But its parameters are clearly defined
— Summation Is over incoming channels

Au-£=(El_E)aul_E (chLﬂchc) *



j il
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* Very large
— Corresponds to the total number of
resonances

— Symmetric matrix

— Diagonal terms depend on each level
iIndependently

— Off-diagonal terms are mixed terms that
iIntroduce the influence of different levels on

each other
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Multi-level Breit Wigner

* Neglecting off-diagonal terms yields the
Breit Wigner approximation
— Analyzing a single level at a time yields the

Single level Breit Wigner (SLBW)
approximation

« Works well if resonances are well spaced

« Originally developed by Wigner based on an
analogy to the dispersion of light

— In some cases, off-diagonal terms matter
. T 1/2 1172
_'(d:'.:“t'cf_i} Plc Pp.t:'r

-1 2 _
Aj.u =(EJ. _E_E Lﬂe"l'lc) 6Au ' Uecr=e ; i ’
i EA_E_EPJ_




Reich Moore Formalism

* Current method of choice
— Keeps most off-diagonal terms

— Neglects impact of gamma channels

« Measurements have shown that fluctuations
between gamma channels at different levels must

be small
E chLﬂcch =E Tchﬂcch+; Tchﬂchc ’ 2 chLﬂchcg apl Z LﬂcTic ’
c cEY ety CEY cEY

-1 i
Alp ={EJ.. _E-I_Al'f_EPlT) Blp+2 Tlc‘L[}cch 4

cEY



« MLBW Is more restrictive than Reich
Moore

— Poor treatment of multi-channel effects

 SLBW Is more restrictive than MLBW
— Can give negative cross-section values



Reich Moore vs SLBW
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Fe-56: RM, MLBW, SLBW
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