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Thermal Neutron Scattering
Kernel Development

The procedure consists of finding the
amplitude of the scattering wave function that
leads to the differential scattering cross section. In
doing so, a few things will be assumed:

(1) First Born approximation;
(2) Fermi Pseudo-potential;

(3) Time-dependent Schrodinger equation
(TDSE)

The first two assumptions have already been
discussed. Why assume the TDSE is explained as
follows: the energy dependency (explicitly) in
the Schrodinger equation implies that the
eigenstates of the scattering system are known,
i.e.,, initials and final states. Usually they are not
known and even if they are known there will a
large number. It is desired to “eliminate” the
explicit appearance of the eigenstates.



In so doing one uses
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Leo Van Hove championed this idea. The time
dependence is subsequently used in a Fourier
transformation.

Assuming that the interaction occurred at
I =1,. The wave function at the detector at the

position 7 for > [ is a solution of the equation
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For I <1, before the collision has occurred
the incident-neutron wave function is

wmc (Fa t) = ei(k 7o)
where

hk — neutron momentum

hw, — neutron energy

The solution at the detector at (7’ 9t) is

w(;:’t) = winc(l_;’t) + wscat(F’t)

Given that for the incident wave winc away
from the potential region
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Approximations:

(a) Born approximation

In the right-hand side of the above equation:

w(?at) — winc (F?t)



(b) Fermi Pseudo-potential
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V,(F.t) = a,0[7 - R, (1]

where

R — position of nucleus n at time t

a, — bound scattering related to the bound cross sec tion as
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Hence the equation to be solved is
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Note that Rn(to) is for reactions that occurred at
the 7 = t().

Making use of the Green’s function method to
solve the equation above. Let G(F-7.t-1,) be the
Green’s function, hence:

V24 %%}G(? —Ft—1,) = 47S(F - F)S(t - 1)




The solution for vy, (7.0) is

Yoo Fu1) = [ [dTdt,G(F -7t = 1), (F.t,) Y a,0lr - R, (1,)]
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where Tis the volume.
Substituting the values for G(r —7',t — ;) and
... we have
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The above expression is the solution for the

scattered wave lpscat at the detector at the
position ¥ for the time !>1, for an incident

neutron of energy 7w, and momentum hk,. It is
not clear how to obtain the scattered amplitude
from the above equation. Leon Van Hove came
up with a cleaver idea of using a Fourier
transform of the type
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f (I” ,W) relates to the scattered wave
amplitude.

After LOTS OF ALGEBRA
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For derivation of the above equation see:
Thermal Neutron Scattering by Engelstaff pages
49-52



The scattered neutron has

K =k, — k = momentum change

w'=w, —w —> energy change

The scattering differential cross section is
defined as

2
da_ ZTU‘f(rw)‘
dEdQ h v,

v, and v initial and final neutron velocity

Read: The Elements of Neutron Interaction
Theory Anthony Foderaro page 555
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The bar indicates time averaging.



The double differential cross section is finally
obtained as

d’o h —iwT | iR 7
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S[7"-R,(0) - F10[7 - R, (7)]

The Space-Time Correlation Function (Van
Hove)

G(F,T) = %E [ ar'si¥'-R,(0) - F18[F - R, (7)]

G(r,7) is not the Green's function!
Interpretation of the G(7,7)

Two parts:

for M = N (diagonal terms) G,(¥.,7)
for M # N (off-diagonal terms) G, (7,7)



Interpretation:

G (r,t) — self — correlation function. 3 second
IDENTICAL nucleus is present

G,(r,t) — distinct — correlation function . 1
second DISTINCT nucleus is present

G(r,0)=G(r,1)+ G, (7r,T)
where

G.(F,7) = %2 [ ar'sl7'-R,(0) - 718[7 - R, (v)]

n=1

and

G,(F,T) = % Y [ dr's[#'-R,(0) - F1[F - R, (7)]

m=n=1

Defining
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Assuming only coherent inelastic scattering
. 2 2
present, le, <a >=<a>"=a
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Recall that
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where
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S(i,w') — Scattering Law
S(K,w') can be obtained directly from
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Properties of S(K.w')

(a) Depends only on the dynamics of the
scatter center

(b) Sum ruler

K2

wa’(l?,w)dw = ——
2M

(c) Condition derived from the detailed
balance

Aw

S(-K,w-) = e_ﬁg(l?,w)



Definitions:

B
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Hence the double differential cross section
becomes
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Notations:

d’o
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or
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where

u=cosf



Simple Example:

(1) Scatterer is a single nucleus of mass M.
Only coherent scattering is accounted for;

(2) Scatterer is free and at rest
This corresponds to the situation dealt with in

the theory of neutron moderation where the
chemical region effects are negligible.

o, |k
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o (E, — E,u) = S(i,w)

u=coso



S(I?,w')

is a delta function as
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and
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Change of variables

E,+ E-2(EE))""u
A

x=E,-FE+

such that

1/2
dx = - 2(Ei0) du




(E1/2 $ E1/2)2
0

A
o (E,— E)=212 E)" f 5(x)dx
4n E,)] 2(E, E)”2
A
o(k,— E)—
4 E,
Recall that







?
range
rgy

Ene

1
? 2A%+
+
: +1)
E .
_ E=
=1
M—_l_9
M:

E=

E,



1
Ofree
1-a)E,

for (1-a)E,<E<E,

o(E,— FE)=

0 otherwise

(Nuclear Reactor Analysis Duderstadt and
Hamilton page 44)
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