22.251 Systems Analysis of the Nuclear Fuel Cycle
Fall 2009
HOMEWORK SET #7

Basic facts about xenon

Xe135 is one of the fission products with a high “cumulative yield”. Although its
direct yield is only about 0.003 (about 0.003 of all fissions give rise to a xenon
fission product), the yield of a Xe135 precursor 1135 is about 0.061 for fissions in
U235, so the total cumulative yield is 0.064. Xenon has a very large thermal capture
cross section; its 2200 m/s cross section is about 2.66 million barns, and because of
its very non-1/v behavior, the maxwellian average cross section at 68°F is larger -
2.72 million barns. Because of this, xenon typically holds down more than 2%
reactivity in LWRs.

Furthermore, xenon has a half life of 9.21 hours and the iodine precursor has a half
life of 6.71 hours. Because the xenon is created by fission but removed by decay and
by neutron capture, we expect its concentration to reach an equilibrium after 6 to
10 half lives. However, since most of the creation by fission comes via the iodine,
interesting time-dependent transients occur when the flux level (i.e., the power
level) is changed. In particular, a power decrease leads to an immediate rise in
xenon concentration because the iodine producing most of it is still present and
decaying to xenon, but the flux responsible for part of its removal has decreased.

The objective of this homework problem is to study these transient and equilibrium
effects and to do this as a further example of the matrix exponential method that is
employed in the ORIGEN code.

Equations describing time behavior of xenon
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Here I and X are iodine and xenon concentrations, y is fission yield, and the other
variables have their usual significance.

Solution of transient xenon equations by matrix exponential

To solve the equations by the matrix exponential method, we first note that they are
a set of ordinary differential equations that, for a constant flux, have constant



coefficients. (Obviously we could also solve them by a number of other methods, but
let’s use the matrix exponential here.)

The first step is to write the equations as a matrix-vector set, using the time
dependent iodine and xenon concentrations as the unknown vector:
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We could have made ¢ time dependent here, but we choose to treat it as a
constant anticipating that we will step ourselves ahead in our solution and so can
change ¢ at each time step if necessary; we also want to retain the character of a
differential equation with constant coefficients.

Letting Y denote the iodine-xenon vector, A the coefficient matrix, and S the
rightmost term that provides the iodine and xenon, se rewrite this in simplified form
as:
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we can now bomb blithely ahead and solve this as a scalar differential equation:

S . S
Y(t)={Y(0)-Z}e‘ o (4)

However for this to make sense where A is a matrix and S is a vector, we have to
rewrite it slightly as:

V() =e{Y(0)-A"S}+A7'S )

where A-1represents the inverse of the A matrix. Note that e is also a matrix.

Input data

A Oa Y
lodine 2.87E-5 sec! 0 0.061
Xenon 2.09E-5 sec'! 1.2E6 Db 0.003
Z¢ for this problem 0.109
@ for this problem 3E13




The cross sections here represent typical values at 800 deg C in a PWR lattice.

1. By setting the time derivatives of eq (1) to zero, show that the equilibrium
concentrations of iodine and xenon are:
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Evaluate these numerically.

2.

Evaluate the individual elements of the A matrix numerically. Then evaluate
the individual elements of the matrix “At” for t = 1 hour. Multiplication of a
matrix by a scalar multiplies each element of the matrix by that scalar. Watch
your units here!

Evaluate the matrix eAt for t = 1 hour by expanding in the usual Taylor series.
Include enough terms to get the individual elements correct to three places.
Calculate and plot the xenon number density during a startup transient using
eq (5) iteratively. That is, use eq (5) with your numerical At matrix values for
t=1 hour and at each step replace Y(0) with the Y(t) you got from the
previous step. The initial Y(0) is zero because this is a startup. Use enough
steps to get to equilibrium. How many hours did this take? Do the
equilibrium concentrations of iodine and xenon match the values you got in
part 1?

Starting from the equilibrium values, calculate and plot a shutdown transient
until a few hours past the peak. In this case the S vector is zero because the
flux is zero. As before, use a 1 hour time step. If the equilibrium xenon is
worth 2.5% reactivity, what is the peak xenon worth? Assume that xenon
worth is proportional to xenon concentration, a good approximation.

Extra credit!!! Verify that eq (5) is correct at equilibrium by finding the
symbolic inverse of the A matrix (that is, in terms of the A’s and ox¢), and
then showing that Y() from eq (5) gives the same symbolic result as

Equation (6).
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