TYPES OF COMMON CAUSE FAILURES AND THEIR ASPECTS | | DEPENDENT | STRUCTURAL* | ENVIRONMENTAL | EXTERNAL* | |---------------------------------|--|--|---|---| | Description of Failure
Cause | Failure of an interfacing system, action or component | A common material or
design flaw which
simultaneously affects all
components population | A change in the operational
environment which affects
all members of a component
population simultaneously | An event originating outside
the system which affects all
members of a component
population simultaneously | | Hardware Examples | Loss of electrical power Loss of steam production
in steam-driven feedwater
system A manufacturer provides
defective replacement parts
that are installed in all
components of a given
class | Faulty materials Aging Fatigue Improperly cured materials Manufacturing flaw | Dirty water in RCS with regard to pump seal High pressure High temperature Vibration | Weather: hurricanes, tornado, ice, heat, low cooling water flow Earthquake (breaks pipe, disables cooling system, breaks containment) Flooding—loss of electricity Birds in engine of airplane | | Human Examples | Following a mistaken leader An erroneous maintenance procedure is repeated for all components of a given class | Incorrect trainingPoor managementPoor motivationLow pay | Common cause psf's New disease Hunger Fear Noise Radiation in control room | Explosion Toxic substance Weather Earthquake Concern for families | | Easy to Anticipate?: | | | | | | Component failure | High | Very Low | Medium | Medium | | Human error | Medium | Very Low | Medium | Medium | | Easy to Mitigate?: | | | | | | Component failure | High, if system designed for mitigation | Very Low, hard to design for mitigation | Low | Low | | Human error | High, if feedback provided to identify the error promptly | Very Low, the factors
making CCF likely also
discourage being prepared
for correction | Low | Low | ^{*} Usually there are no precursors ## EXAMPLE OF COMMON CAUSE FAILURE SOURCES POTENTIALLY ABLE TO AFFECT DATA CENTERS SERIOUSLY | Support System | Environmental (Exceeding Allowable Envelope) | Structural | External | |---------------------------|--|---|--------------| | | | Manufacturing | Earthquake | | Fuel Quantity | Temperature | Flaw | • | | Fuel Quality | Pressure | Faulty Maintenance Procedure Component Design Error | Hurricane | | Cooling | Vibration | | Tornado | | Lubrication | Noise | | Flood | | Ventilation | Air Quality | | Explosion | | Human Error | Electromagnetic Pulse | | Labor Strike | | Control Power | | | Terrorist | | Interfacing
Switchgear | | | Action | ## **KEY CHARACTERISTICS OF THE PARAMETRIC MODELS** (After Mosleh, 1991) | Estimation Approach | Model | Model Parameters | General Form for Multiple
Component Failure Frequency | |-------------------------------------|--------------------------|--|---| | Nonshock models
Single parameter | Beta factor | Q_t, β | $Q_k = \begin{cases} (1-\beta)Q_t & k = 1\\ 0 & 1 < k < m\\ \beta Q_t & k = m \end{cases}$ | | Nonshock models
Multiparameter | Multiple Geek
letters | $Q_t, \beta, \gamma, \delta$
m-1 parameters | $Q_{k} = \frac{1}{\binom{m-1}{k-1}} (1 - \rho_{k+1}) (\prod_{i=1}^{k} \rho_{i}) Q_{t}$ $\rho_{1} = 1, \rho_{2} = \beta, \dots, \rho_{m+1} = 0$ | | | Alpha factor | $Q_t, \alpha_1, \alpha_2, \ldots, \alpha_m$ | $\begin{aligned} Q_k &= \frac{k}{\binom{m-1}{k-1}} \frac{\alpha_k}{\alpha_t} \ Q_t, k = 1, \dots, m \\ \alpha_t &= \sum_{k=1}^m k \alpha_k \end{aligned}$ | | Shock models | Binomial failure rate | Q_1, μ, ρ, ω | $Q_k = \begin{cases} \mu \rho_k (1-\rho)^{m-k} & k \neq m \\ \mu \rho^m + \omega & k = m \end{cases}$ |