22.51 Quantum Theory of Radiation Interactions

Final Exam - Solutions
Tuesday December 15, 2009

Problem 1 Harmonic oscillator 20 points

Consider an harmonic oscillator described by the Hamiltonian H = hw(N + 3). Calculate the evolution of the expectation value of
the position of the harmonic oscillator z = /52— (a + a') in the following cases:
a) The harmonic oscillator is initially prepared in a superposition of number states:
[P(t = 0)) = cal2) + cb[3)

where c,, c;, are coefficients such that the state is normalized (here for example take ¢, = cos(¥9/2) and ¢, = €% sin (9/2))
We can use the Schrodinger picture to find the evolution of the state:

(1)) = cos(9/2)e 2 |2) + ¢ sin (9/2)e %" |3)

(Notice that I’ve already eliminated the common phase factor e—#z*). Then we can calculate the expectation value of z:

(x(t)) = 5 n (cos(9/2)e™“ (2] 4+ e~ sin (9/2)e"**(3]) (a + a') (cos(¥/2)e2"|2) + €' sin (9/2)e~3<*(3))

mw
Only the terms (2|a|3) = v/3 and (3|a’|2) = /3 survive, yielding

(x(t)) = 2:;} sin(¥) cos(wt — ¢)

It could have been maybe simpler to use the Heiseberg picture, remembering that a(¢) = a(0)e~**. Then:

[ R . _ . .
(x(t)) = ST (cos(9/2)(2] + e~ sin (9/2)(3]) (ae™ ™" + ale?) (cos(9/2)|2) + €' sin (9/2)[3))
and the same result as above is directly obtained.
b) The initial state of the harmonic oscillator is a superposition of coherent states:

[Y(t = 0)) = cale) + cs|B)

where ¢,, ¢, are coefficients such that the state is normalized.
In this case it is convenient to use the Heisenberg picture:

(@) =\ o (el + 1D (ae™ + aTe™") (cala) + | )

The important point here was to remember that although the coherent states are normalized, they are not orthogonal, thus («|3) # 0,
but
<Oé|6> = Oaﬂ = e_(la‘2+‘ﬁ|2—2a*ﬁ)/2

We then have

<$(t)> = % (|Ca|2(aefzwt + a*em)t) + |Cb|2(6871wt + 6*ezwt) + Czcb(a*ezwt + Befzwt)Oaﬁ + Cacz (aefzwt + 6*ezwt)0276)

c) Would the choice ¢, = cos(1/2) and ¢, = €% sin (9/2) normalize the above state?
With the above choice

(1h|) = cos(9/2)? + sin (9/2)* + sin (9/2) cos(9/2) (Oa,pe™ +Of ge™ ) =1+ sin(ﬁ)e_(|“‘2+|B‘2)/2Re[eo‘*ﬁew] #1



Problem 2 Coupling of a spin to an harmonic oscillator 20 points

Consider the system in figure[Il A cantilever with a magnetic tip is positioned closed to a spin-— (of gyromagnetic ratio ~) in a strong
external magnetic field B along the z-direction. The magnetic tip creates a magnetic gradient G, such that the field felt by the spin
depends on the position of the tip itself, B;,;, = B + G.z. In the limit of small displacements, the cantilever can be modeled as an
harmonic oscillator of mass m, oscillating along the z direction at its natural frequency w..

Cantilever magnetic tip ]
B
|

Figure 1: A cantilever coupled to a spin. Adapted from P. Rabl, P. Cappellaro, M.V. Gurudev Dutt, L. Jiang, J.R. Maze, and M.D.
Lukin, “Strong magnetic coupling between an electronic spin qubit and a mechanical resonator”, Phys. Rev. B 79, 041302 R 02
(2009)

a) What is the total Hamiltonian of the system (spin+harmonic oscillator)?
1 1
Hspin = AyBS, = 571730,2 = Ehwaz

1
Hh.o. - hwc(ﬁ + 5)

The coupling between the cantilever and the spin is given by the extra field G, z(¢) acting on the spin:

V =mG.2S, = h”sz% (a+al) = h%az(a—k al)

2mwe

with A = 7G. / % The total Hamiltonian is thus

1 A
)+ h§az(a +af)

1
Hiot =Ho+V = iﬁwaz + hwe(n + 5

b) The magnetic gradient is usually small, thus the coupling term between the spin and the harmonic oscillator can be considered
a small perturbation. Use perturbation theory to calculate the energy and eigenstates to the lowest non-vanishing order.
The eigenstatates of H are eigenstates of the o, and 7 operators:

w6 = 0)n), 65} = 1))
with energies:

1 1 1
Eg?g:_§m+hwc(n+§), E§?g:§hw+ﬁwc(n+ )

The first order correction is calculated as A®) = (9|V|9). Here:

B2 (0)(nl[o(a + ah)][0}n) =0

AL
0,n 2

and Aglfl = 0 as well. Thus we need to calculate the second order energy shift. First we calculate the first order eigenstates.

(0, m|V1]0,7n)|0, m) (1,m|V1]0,n)[1, m)
Ui = +y
s EO - B ES) - B,

OO'ZO ma—l—aTn M1lo /2]0Y(m|(a + aT)|n
5D 3F: Lo LICESI I SR TE UL R
m 0 1,m

m#n RO



finally,
|1/’((Jlr)z> = wi (vVn0,n —1) = vVn+1[0,n + 1))

Similarly, we obtain

o) = =2 (VAlLn = 1)~ VAF L0+ 1)

The second order energy shift can be calculated from A% = (¢ |V |41):

A2 A2
2 _ _ _
Ao =gn—n+1)]=—o~
Problem 3 Time-dependent perturbation theory: harmonic perturbation 35 points

Use time-dependent perturbation theory to derive the transition rate for a perturbation Hamiltonian V'(t) = V4 cos(wt). You can use
the following steps:

a) The unperturbed Hamiltonian is H,, with eigenvectors and eigenvalues: Hy|k) = hwy|k). In the interaction picture defined by
Ho, the state evolves under the propagator Uy (¢): | (t))r = Ur(t)]1(0))). What is the differential equation describing the evolution
of Ur (t)')

. dUT
h— =V (t)Ur(t
th— T()Ur(t)
with Vi (t) = etttV (t)e~ Mot
b) Write an expansion for U;(¢) to first order ( Dyson series) .
Integrating the equation above:

.t
Ur(t) =1 — %/O AVt

c) Calculate the transition amplitude cx; (t) = (k|U;(t)|i) from the initial state |) to the eigenstate |k) to first order, as a function
of wii = wi, — wy, Vi = (k|Vpli) and w. Hint: the following integral might be useful:

/t i it gtiwnt! _ o i(witw)t/2 5 (w1 £ wo)t/2)
0 w1 + w2

From the expression in b) and the definition of V;:

. ¢ . t
cui®) = (KULON) =6 — 3 [ (Vi(©]0) =6~ 7 [ dtGVE)ligeior)
0 0
Taking k = ¢ we have:
)

t i ‘
enilh) == /0 dt' (k|Vi (t")li) = = (k|Volé) /O dt’ cos(wt)e i —r)

Setting wy; = wr — w; and using the given formula, we have:

cri(t) = _% |:ei(w;m-+w)t/2 sin ((wi +w)t/2) + eilwri—w)t/2 sin ((wki — w)t/2)

h Wi +w Wri — W

d) Calculate the probability of transition py;(t) = |cx; (t)|? in the long time limit, with the following approximations:

sin? (Qt/2) T

Am =g — =31

an in (214/2) sin (2at/2)
. osin (£29¢ sin ({22 _
Jim 0.0 =0



(for V= QQ)
The probability pxi(t) = |cxi(¢)]? will have contributions from terms like

i 2
pi(writw)t/2 51 (wri +w)t/2)
Wi +w

and

(ei(wkﬂrw)t/Q sin ((wg: + w)t/2)> <ei(wmw)t/2 sin ((wri — w)t/2) ) '

Wri +w Wki — W
This last term goes to zero by the second relationship provided, while the first terms give:

7| Vir)?
2h2

pik = t[0(wri +w) + 0(wri — w)]

e) Finally, you should write down the transition rate W,;, = dg;’“. The transition rate is just the probability per time:

7| Vir|?
2h2

Wik = [0(wri +w) + d(wri — w)]

Problem 4 Rayleigh light scattering 35 points

Consider the elastic scattering of light from a molecule in the atmo-
sphere. We want to calculate the frequency dependence of the cross-
section, to understand why the sky is blue and the sunset is red.

The system of interest is described by a molecule, with eigenstates
|my) and energies & and two modes of the radiation field, k¥ and &’
with energies hwy, and hwj, and polarizations A and \'. For conve-
nience the system is enclosed in a cavity of volume V = L3. The
interaction between the radiation field and the molecule is describe by
the hamiltonian V = —d - E in the dipole approximation, where

E= Z 1/ 27, (ahfei’;'ﬁ + azge—iﬁ'ﬁ) €he Figure 2: Rayleigh scattering, showing the incoming and
4 outgoing photon into the volume of interest.

with R is the position of the center of mass of the molecule.
You can use the following steps to calculate the scattering cross section do = gff' ,With Wy, = 25 |(f|T'|i)|*p(Ey), where T is the
transition matrix and p(E) the final density of states. -

a) Write a formal expression for the transition matrix element ( f|T'|¢), to the lowest non-zero order in the perturbation V.

VIOV
it = i + 3 R+

As V does not allow transitions involving two photons, the first order term is zero and we have:

V)V
:Z<f| [D{VIE)

(1Tl FE

l

b) What are the possible intermediate (virtual) states that we need to consider in this scattering process? Use them to simplify the
expression in a). The initial state is |[m;, 15 1x, 0xr.x/) and final state |m;, O 1, 157 1/ ). Intermediate states are such that there is only
1-photon transition, either |my, Oy 1x, O A1) OF |my, 1gx, 1gr av). Thus:

Z (mg, Oixs Ly x| VM, O n, O a) (m, Orin, Orr av | VM, 1ian, Or )

(fIT)i) = (& + hwy) — &

l

+Z (mg, Orons L v IVIma, Lo, Lo ay(ma, L, Ler av |V, Liax, Opr ar)

; (& + hwi) — (& + hwi, + hwy,)



Using the explicit expression for V, we have:

o e @)@ d) | G )@ d)
Tli) = 2== 1 i(k—k)-R) k f e k %
UITT) = =7y wrwie | E—Gthe | E-&-h

c) What is the flux of incoming photons and the density of states of the outgoing photons?
e = ¢/ L3

and 5
L w?
PE) = on 7™

d) Find an expression for the differential cross section % (where dS is the solid angle into which the photon is scattered)

From do = g/—f = %%p(Ef) we find:

do orI3 L 3 wz 471'2712( )
_ = — e — ——— (W WL
A2 h ¢ 21 hed L6 MR

- - - - 2
(€w - dg1)(€x - dig) n (€ - dp1) (€ - dis)
E — &+ hwy, Ei— & — hwy

simplifying the expression:
do B wzwk/

a0 A

- - - - 2
(€ - dy1)(€x - di) . (€ - dp1) (€ - dia)
Ei — & + hwy E — & — hwy

e) In the case of elastic scattering [my) = |m;) and w, = w). What is the scattering cross-section dependence on the photon
frequency wy? How does that help explaining why the sky is blue and the sunset red?
We can further simplify the cross section to
o = 2
2(€k’ . dzl)(gk . dlz)(gz — 51)
(& — &) — (hwy)?

4
da_wk

a0 ot

As (& — &) > hwy, the cross section depends on the frequency as wy, thus blue light is scattered more than red light, giving the
color of the sky.
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