22.51 Quantum Theory of Radiation Interactions

Final Exam

December 14, 2010 Name: ..................

Problem 1: Electric Field Evolution 20 points

Consider a single mode electromagnetic field in a volime L3. Calculate the evolution of the expectation value of
the electric fieldk = ,/%(a + a') in the following cases:

a) The state of the e.m. field is a superposition of two coherent states:
$(0) = [cos(¥)|a) + sin(9)e™?|B)] /N

where N is a coefficient to normalize the state.
Solution:
In the Heisenberg picture we can calculate the evolution of the creation and annihilation opsitatersi(0)e.

Thus we obtain:
2mhw : )
(B(t)) =1/ 723 (ae™! + afemt)

(E(t)) =1/ 272—?} [cos(9)® Re[ae™"] + sin(¥)* Re[Be™"] + sin(20) Re {e’? (a(Bla)e™" + 3 (a|B)e ") }]

where(a|3) = e~ (ol +181*)/2+a75,

b) The state of the e.m. field is a mixture of the two coherent states above:

p(0) = cos?(9)|a)(a| + sin®(9)|3) (5|
Solution:

Still in the Heisenberg picture we can calculate the expectation value as:

(E) =Tr{p(0)E(t)} =4/ 22—2‘”Tr {p(0)(ae™" +ale~ ")}

We note that Tfa|a){«|} = (a|ala) = « and find:

(E) =Tr{p(0)E(t)} =1/ 27220) [cos(9)? (ae™ + a*e™™") +sin(d)? (Be™" + 5*e™™")]

_ 272_};‘” [cos(9)? Relae™] + sin(d)? Re[fe™]

¢) What is the average photon number in the two cases?
Solution:
We want to calculatéa’a) in the two cases.



In the first case, we find:
(n) = cos(¥)?|a|? + sin(v)?|B|* + sin(20) Re {'¥aB* (B|a) }
while in the second case, the last term is zero:

(n) = cos(v)?|a]* + sin(9)?| B

d) Assuming for simplicity that «, 5 € R (are real), in what limit the two results found in a) and b) (and the two
results in c) become equivalent?

Solution:

If the coherent states where orthogonal, the coherent superposition and incoherent mixture would have given the same
expectation values. Their overlagig3) = e~ (o*+181*)/2+e"8 Forq, 8 € R we havela|B) = e~ (" +8°~208)/2 —
e~(@=A* which goes to zero it — 3| > 1.

Problem 2: Atom observed via a quantum meter 35 points

Consider the experiment performed by Brune et al. (PRL 77(24) 4887, 1996). A Rydberg atom is prepared in an equal
superposition of two states (its grougiland excited state)), which are separated by an energy

This state is achieved e.g., by applying the operétgr= 1 ) to the atom’s ground state.

5
vzl -1
The atom interacts with an e.m. field, which is initially in a cohererg |statvith average photon numbér) = o?

(with « real). The e.m. field is inside a cavity and thus restricted to a single mode of frequ&heyinteraction can
drive a transition between the two atom levels at axageciting the atom from the ground to the excited state, while
annihilating a photon; and creating a photon, while lowering the atom from the excited to the ground state.

a) Write the Hamiltonian describing these two systems () and their interaction (V).

Solution:

H= w%—i— V(GTG+%)+ Maot +a'o™)
or 1
H= wle)le|+ v(ala+3)+ Aale){g +allg)(e])

b) We now take the limit where A\ < w,v. Thus the interaction can be considered as a perturbation. Further, we
have A < A = w — v, i.e. the system is off-resonance. Then we can simplify the Hamiltonian as:

HaH=Ho+ Y (6Eynlg,n){g,n| + 6Eenle.n){e,nl)

where 6 E, . ,, are the energy shifts due to the interaction, to the first non-zero order in time-independent perturbation

theory. Write an explicit expression for 7.
Solution:

The zeroth order correction is zero, so we need to calculate the second order correction, which gives

Vle,n — 1))? A%n 1 A%n
oo lgnlViem—1p £ om el
7 K 7 Fenm vty =R
and fenlVign D2 X(nt1) X(n + 1)
Vig,n+1 n+1 1 n+1
5E(2) = &R ! = Ee n ~ 5 T e—
en Eon — Eys A — , w+ vin+ 2) + A

¢) What is the evolution of the initial state described above? Use the Hamiltonian found above to prove that the
evolved state (in the interaction picture defined by H,) is given by %ﬂg, ae” M) 4 eie® e, aetr®),

2



Solution:
We write the initial statez(0)) = %(l e) + |g))|«) in terms of the Hamiltonian eigenstates:

e—lal®/2
¥ =" Zf|en+|g7 n))
The evolved state is then:
e—lal?/2 B 5 s
W)(t» _ Z \/_ ( i(n+1)A iE/A|e TL> mA t/A|g’n>)
e—lal®/2 ae—i)\2t/A)n e Nt/ Ay
[6(t)) = ( A kit WP

VAl

i>\2t/A> + e—i/\2t/A|e7ae—i/\2t/A>)

V2 Vnl

n

(1)) = %(Igﬂe

d) The atom leaves the cavity after a time 7', and it is then rotated back by the propagator Uy . What is the probability
P,.(T) of finding the atom in the excited state?
What does this probability becomes in the limit (n) — co? What about the limit (n) — 0?

Solution:

We setd = aei*’ /A, The state becomes:
1 1 * 2 *
|1/)(T)>:§ [|g,6>+|e,ﬁ>+ew|g,ﬂ >_€@|eaﬁ >]

1 X )
(1)) = 5 [l9) (18) +€#187)) + le) (18) — €*216))]
The probability of being in the excited stiége

Pe(T) = —Tf{(|5> e?16%)) ({81 —e#(B) } = i(<ﬂ|ﬂ>+<ﬂ*|5*>—6’i“"<5|6*> #(6718)) = (1 Re[e'(5"13)])

2

From the value o{ﬁ* 18) = e (1=¢"""") we haveRe[ei¥ (3*|3)] = e~ 5in(®/2*/2 cos( + a? sin ).
In the limit (n) = a? — 0 the probability is

2
P, = %(1 — cos @) = sin? (;—AT)

thus the atom oscillates between its ground and excited state as if performing Rabi oscillations with Rabi frequency
0= )\2/A.

In the opposite limi{n) = a?> — oo the exponential term goes to zero provided #ifatin(¢/2)? > 1. When the

distance between the two states of the cavity e.m. field becomes large enough We hakg = %: the reduced

state of the atom (neglecting the e.m. field) decays to an incoherent (classical) mixture of the two levels.

Problem 3: Transition Rate 15 points

Consider the same system as in the previous problem: a two-level atom (with energy separatienacting with

a single mode e.m. field of energy by an interaction of strengtt\. Now we consider the case where the atom is
initially in the ground state, while the field is still in a coherent state aith /n. At time¢ = 0 we turn on the
interaction between the atom and the field.

a) To first order approximation, what is the transition rate to a state |e, 3), with 3 = ae®™?

Solution:

Since the interaction is time-independent, we can use Fermi’'s Golden rule. The transition rate is given by:

2
W = ?|m,»|25(w,»i)



For the system at hand, since the initial and final states of the field are not eigenstates of the Hamiltonian, we have
to find the correa;; from the perturbatiod” in the interaction picture. We firld = h\(acte "2t 4 afo—eiAt),

thuswy; = w — v = A, since the transition from ground to excited state will involve also the exchange of a photon of
energyv. The matrix element is given by:

Vig = (e, lhM(ao™ + alo7)|g,a) = (Bla)ira
With 8 = ae™ we have(3|a)|? = e~4o”sin(@/2)° Thus the rate is:

W = 27hA2 (n) e~ 4m sin(/2)% 5(A)

b) Compare this result to what you found in problem 2. What would be the transition rate in problem 3.aif A > A\?
What would have been the probability P.(t) of the atom being in the excited state (problem 2.d) if the initial state were
lg, ) as in problem 3?

Solution:

If A > X\ or more generallA % 0 the transition rate becomes zero. This is consistent with what found in the previous
problem. There, we saw that fdr > X the perturbation only acts as a phase shift for the atom. Thus if the initial
state igg, «) the probability of a transition to the excited state would be zero.

Problem 4: Resonant Scattering 30 points

Consider light scattering from an atom. The system of interest is described by an atom (with eigenstated
energie€;) and the e.m. radiation field.

For convenience the system is enclosed in a cavity of volumeL3. The interaction between the radiation field and
the atom is described by the hamiltoniaa- —d- Ein the dipole approximation, where

= [2m wp iRt —ihR)
FE = hzg v (ahge + ahge ) €he

with R the position of the center of mass of the atom.

You can use the following steps to calculate the scattering cross aetti:@%ﬁ, with Wy; = 2X((f|T'[i)|*p(Ey),
whereT is the transition matrix ane( E ;) the final density of states.

a) What is the flux of incoming photons and the density of states of the outgoing photons?

Solution:

PBipe = /L3

and

L\? w?
Ep)= (=] a0
o) = (52) %

b) What are the possible intermediate (virtual) states that we need to consider in this scattering process?

Solution:

The initial state igm;, 15, 0% ») and final statém,, 0x ix, 1x,x/). Intermediate states are such that there is only
1-photon transition, eithém;, Ok 5, O /) OF |my, 1 x, 1ir a/). Thus:

(FIT]i) = Z (myg, Okix, L a [VImu, Ok ix, Orr av ) (M, Orix, Ok v | VImi, 1iin, O )
(& +hwg) — &

l

n Z (Mg, Ons L a VI, L, L ) (ma, Tiax, i x| VIma, i, O av)

l (& + hwi) — (& + hwy, + huw})



Using the explicit expression fot, we have:

N @, -dp)(@-di) (& -dp)(@, - d)
Tl = 2 i(k—k)-R) k fl k- k
UIT1) = =5y wwwie Z €& thon | & &

d) Find an expression for the differential cross sectlon S (where d<2 is the solid angle into which the photon is
scattered)

Solution:

Fromdo = & — 22 JUITOE by we find:

- - - - 2
(€ - dg1)(€x - dii) . (€ -dp1)(Ew - dii)
51' — 51 + hwg 51 — gl — hwi

do o I3 [ L\* w,% 472 2
(wrw)

a2~ T ¢ \2r) h LS

simplifying the expression:
2
do  wiwp

_ (@ - dyo) (@ - dus) (G ds1) (@ - dis)
dQ ct

E— & +hwyg Ei— & —hwy

e) \We now consider resonant scattering. This occurs when the incoming photon energy is almost equal to the
transition energy to one intermediate level: w ~ & — &, (for the virtual state [ with energy &;).
Write an expression for the cross section assuming that only the dominant term is important.

Solution:

do _ s |denew)(dni - ex) ?
dQ €n — € — hwg

hwiep—e€;

f) A more realistic expression is obtained if one assumes a finite linewidth of the atomic level, so that & — &; is
replaced by &, — & — i T'/2. What is the resonant scattering cross section as a function of A = (&; — &;) — hwy, and
IT?

Solution:

do

i kklg
dQ

A2 £ p2T2/4

(g - e) (i - ekﬂ
~0
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