
22.51 Quantum Theory of Radiation Interactions 

Final Exam 

December 19, 2011 Solution 

Problem 1: Rutherford Scattering 35 points 

100 years ago, in 1911, Rutherford explained the observed surprising behavior of alpha particles scattering from a gold 
foil, leading to the discovery of the nucleus. In this problem we want to derive from quantum-mechanics scattering 
theory the expression for Rutherford cross-section for electrons. 

The system is described by an electron and a nucleus, for convenience enclosed in a cavity of volume V = L3. The 
interaction between the electron and the nucleus is the Coulomb interaction between the electron and the Z protons in 
the nucleus. 

You can use the following steps to calculate the scattering cross section dσ W
= fi , with W 2π

fi = 
n
| (f |T |i) |2ρ(E ) f ,Φ

where T is the transition matrix and ρ(Ef ) the final density of states. 
inc 

a) Assume the electron energy is very large, so that ve ≈ c and pc ≫ mec
2. What is the flux of incoming electrons 

and the density of states of the outgoing electrons? 

Solution: 

Φinc = ve/L
3 ≈ c/L3 

and setting E ′ = 
V

p ′ 2c2 + m2
ec

4 ≈ p′ c, we have

 3 3 
L d p ′ L E 

′ 2

ρ(E ′ ) = 

�

p′2 dΩ = dΩ 
2πl 

�

dE′ 

�

2πl 

�

c3 

b) The interaction Hamiltonian is given by V = eϕ(qr), where ϕ is the scalar potential given by the charge distribution
 
Zeρe(qr) of the nucleus via the equation ∇2ϕ(qr) = −Zeρe(qr)/ǫ0. The initial and final state of the electron can be
 
described by a plane wave, normalized to the cavity volume.
 

What is the transition matrix element | (f |T |i) |2 to lowest order?
 

[Note: here you can assume that the nucleus does not change its state, so we can neglect it altogether in the calculation
 
and consider its effects indirectly, through the potential V acting only on the electron]
 

Solution: 

The electron initial state is |  
p) = e

ipp·pr/n
√ 

3 
and its final state |p 

′ 

′) ip p ·r/n

= e
p

√ 
3 

. Thus we have: 
L L

e
� 

ip r ′ e (f |T |i) = (p ′ | eϕ(qr) |p) = e − ·rr/nϕ(qr)e ipr·rr/nd3 r = 

� 

e irq·rr/nϕ(qr)d3 r 
L3 L3 

V V 

with qq = pq − pq ′ . 

d) Use Green’s theorem, 
J

d3r (u∇2v − v∇2u) = 0 (with u = eiqr·rr/n and v = ϕ(qr)) to give the transition matrix a
 
simple physical interpretation as the Fourier Transform of a physical quantity.
 
What information can then be gathered from a Rutherford scattering experiment? How does this relate to the discovery
 
of the nucleus?
 

Solution: 

From the properties of the exponential, we have ∇q irq·rr/n iqr·rr/n and ∇2 iqr·rr/n e = iqq/le e = −|qq|2/ 2 irq·rr/
l e n.
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Inserting this in the integral 
J 

eirq·rr/nϕ(qr)d3r, we have
V 

e 2 2 
l el( )  f |T |i = − ϕ(qr) 2 e irq·rr/n = e irq·rr/n 2ϕ(qr)

L3

�

∇
3 qq

�

|qq|2 L | |2 V V 

∇

Using then the definition of the potential, we have 

Ze2 2 � Ze 2 
l l(f |T |i) = − e irq·rr/nρ| | e(qr) = − F (qq)

ǫ0L3 qq 2 ǫ0L3|qq|2V 

Thus we found that the transition matrix is proportional to the Fourier Transform of the charge distribution. F (qq) is 
called the form factor of the charge distribution. 

Performing a scattering experiment varying qq (varying the electron energy and as we will see below, the scattering 
angle) one can thus recover the nuclear charge distribution. This means that one can map the shape of the nucleus. In 
particular, the observed angular dependence of the cross-section indicates that the atom presents a point-like target to 
the electrons, thus supporting the idea of a small nucleus inside the atomic electron cloud. 

e) Assume a point distribution for the charge density, ρe(qr) = δ(qr). What is the scattering cross-section? 

Solution: 

For a point distribution, 

F (qq) = 

�

e iqr·rr/nρe(qr) = 

�

eirq·rr/nδ(qr) = 1 
V V 

Bringing together the various terms calculated, we have 

3 
d σ 2π 3 2 4 4 ′2 4 2 ′ 2 

l
= Φ−1 | (f |T |i) |2 L 2π Z e

�

L E e Z E 
inc ρ(Ef ) = 

�

= 
d Ω l c l ǫ2 L6

0 |qq|4 2πl c3 4π2ǫ2|qq|40 c4 

or, using the fine structure constant, α 
 

= e2 ,4πǫ0nc

d σ 4α2Z2 2
l E 

′ 2

= 
d Ω |qq|4c2 

f) Since we neglected the nucleus recoil, the scattering is elastic, and the only change is the electron momentum 
direction, which is deflected at an angle ϑ with respect to the initial direction. Use this consideration to find the 
famous angular dependence of Rutherford scattering. 

Solution: 

For elastic scattering, |pq| = |pq ′ | and we assumed pq · pq ′ = p2 cosϑ. Then, |qq| = 2p sin
(

ϑ
)

= 2E ′ /c sin
(

ϑ
)

. Thus we2 2
have, 

d σ 4α2Z2 2 2 α2Z2 2 2
l E 

′ 

l c
= = 

d Ω |2E′/c sin 
(

ϑ
) 

|4c2 4E ′ 2 sin4 
(

ϑ
2 2

)

Problem 2: Short Questions 15 points 

a) We classified various types of e.m. field scattering with atomic electrons. What were the criteria for the classifica­
tion? What are examples of different types of scattering? 

Solution: 

Energy of the incoming radiation wrt ionization energy. Elastic or inelastic scattering. 

b) In class we saw two different types of Hamiltonians describing the interaction of the e.m. field with matter, the 
dipole interaction, −q qd · E and the vector potential −  e q 2

pq · A + e A2. When is it more appropriate to use one mc 2mc 
interaction or the other? Which interaction should we generally use to describe scattering and why? 

Solution: 
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The two Hamiltonians arise from quantizations of the e.m. fields in different gauges, in particular the dipole Hamil­
tonian is derived in the Lorentz gauge, which assumes no sources. Thus, the dipole Hamiltonian can be used for 
optical wavelength, which are much larger than the atom’s dimension (so that the approximation of having no sources 
is justified). 

For scattering, we should generally use the vector potential Hamiltonian, since it allows two-photon transitions even 
to first order approximation, although for optical light scattering, the dipole Hamiltonian does give the same result. 

c) What state best describes a classical e.m. field? Why? 

Solution: 

A coherent state, since the expectation value of the electric and magnetic fields have the same time evolution as the 
classical fields. 

d) What differential equation describes the evolution of an open quantum system (a system interacting with the 
environment)? Is this equation always valid? 

Solution: 

The Lindblad master equation, which is valid only for a Markovian environment (i.e. a memory-less environment). 

e) What type of information can you gather from a scattering experiment of X-rays or neutrons from a crystal? What 
extra information can a neutron scattering experiment provide you? 

Solution: 

From scattering experiment we can derive the structure factor, which gives information on the crystal planes via 
Bragg’s Law (thus we get information on crystal structure). Neutron scattering also depends on spins, hence we 
can get isotope information and magnetic structure (the main difference between the two scatterings is that neutrons 
interact with nuclei, while x-rays with electrons). 

Problem 3: Radiation Pressure on a Cantilever 30 points 

Consider a cantilever of frequency ωc and mass mc. A beam of (single-mode) light of frequency ν is directed per­
pendicular to the surface of the cantilever. Radiation pressure can be represented by an interaction Hamiltonian 

†V = lg(a a)x̂, where a, a† represent the light (e.m. field) operators, and x̂ is the quantum mechanical position 
operator of the cantilever (a quantum harmonic oscillator). 

a) What is the total Hamiltonian H = H0 + V representing the e.m. field, the cantilever and their interaction? What 
are the eigenstates and eigenvalues of the uncoupled Hamiltonian H0? 

Solution: 

The Hamiltonian is represented by two harmonic oscillators, one for the field and one for the cantilever, coupled by 
V : 

 

1 1 l† †H = H0 + V = lν(a a + ) + lωc(b
†b + ) + lga a (b† + b)

2 2 2mcωc 

where I defined b, b† the cantilever operators.
 

The eigenstates of the uncoupled system are simply the number states of both oscillators, |nγ , nc), where I called nγ
 
1 1the photon number, and the corresponding eigenvalues are Enγ ,nc = lν(nγ + ) + lωc(nc + ).2 2

b) Consider now the radiation pressure as a perturbation coupling the two systems. What is the energy shift Δnγ ,nc 

to the lowest non-zero order? 

Solution: 

We can use time-independent perturbation theory to calculate the energy shift. Since x̂ does not have diagonal terms 
in the number-state basis, the first order is zero. The second order is given by: 

′ ′ 
� | (nγ , nc|V �nγ , n |2 

Δ(2) c 
= nγ ,nc (0) (0) 

n ′ Enγ ,nc − En ′ γ ,n 
′ 

γ ,n 
′ 

c c 

3 



4 

∑

∑
∣

∣∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Note that the term a†a only connects states with the same number of photons. The term x̂ instead has non-zero matrix 
elements between states differing by one vibration excitation of the cantilever: 

l(2) 2 2  2 
� | (nc| (b† + b) n ′ 2 

Δ = l g nγ
† ) c

nγ ,nc 
 a a nγ
2m ω

| ( | | |
l

| ) |
c c 

′ 
ωc(nc n c′ )n c 

−

2g2 
� | (n | b |n + 1) |2 | (n | b† |n − 1) |2 � 2g2 2

( g2l l lc c c 
Δ 2) = 2 c 

n + = n2 [ (n 2 
nγ ,nc γ − c + 1) + nc] = n

2mcω2 
c nc (n + 1) nc (nc 1) 2m ω2 γ 

c c c 

− − − − 2m ω2 γ
c c 

c) What is the expectation value of the cantilever displacement (the displacement from the position it had in the
 
absence of light, δx = (x̂′ ) − (x̂0))?
 

[Hint: calculate the perturbed eigenstate of the system to the lowest non-zero order and use it to calculate (x̂′ )]
 

Solution: 

The system perturbed eigenstates are |ψ) = |n , n )+ 
�

ψ(1) 
γ c

�

, with the first order eigenstate, �

� nγ , n 
(1) 
) ′

c 
′  

�

� V nγ , nc
ψ = n′ , n ′ 
�

(0) 

�

|
(0) 

) 
γ c 

n ′ γ ,n 
′ 

( 

Enγ ,nc 

�

− En ′ ,n ′ c γ c 

�

�

�

Note that here we neglected the normalization of the eigenstate, since it is a second order effect. 

Using the results found in the previous question, we have 

) 

l(1) 

 

 
� (nc − 1| b |nc) |nγ , nc − 1) (nc + 1| b† |nc) |nγ , nc + 1

ψ = lg nγ + 
ω lc ω[nc − (nc − 1) l

)
2mc ] ω[nc (nc + 1)] 

� 

−
�

ψ(1)
) g l 
= 

 

nγ 
√
nc nγ , nc 1

√ 
�

[

1 |nγ , nc + 1
ω 2mcωc 

| − ) − nc + )
]

In the absence of the i

�

nteraction, the expectation value of the position is zero, since (nc| x̂ |nc) = 0. With the 
perturbation, the state is now |ψ) = |n + 

�

ψ(1) 
γ , nc)

�

and the expectation value of the position is | ) = 

(nγ , n
(

c ψ ) 

(ψ x̂
1

|ψ
| x̂ + ψ(1) x̂ |nγ , nc) (other terms a

�

re zero, since x̂ only links states that differ by one excitation). 
Then, the d

�

�

ispla

�

ceme

(

nt is 

�

�

lg 
δx = (x′  ) = 2Re 

�� 

n , n |x̂|ψ(1) 
γ c

)� 

= nγRe 
�

(nγ , nc| (b† + b) 
√ √ [

nc |nγ , nc − 1) − nc + 1 |nγ , nc + 1
2mcω2 

c 

)
]� 

lg 
δx = x′  = nγRe 

�√ lg( ) nc (nc|b† nc 1
√ 
nc + 1 nc b nc + 1 = nγ

m 2 
cω

| − ) − ( | | ) 
� 

− 
m ω2

c c c 

d) Assume now that the light (the e.m. field) was given by an incandescent bulb, thus it is given by thermal radiation 
at a temperature T . What is the cantilever displacement? 

Solution: 

We need to calculate (x′  ) but averaging over the number of photons, with the usual thermal distribution. We have 

(n ) = Tr {ρn̂} = (1− e −βnν) −βnnν
γ

�

ne . 
n 

Now ne−β ∂e−βnnνnnν = − 1
n

, thus ν ∂β 

1 ∂
� 

e−βnnν ˜
n 1 ∂Z 1 ∂ ˜ln Z e−βνn

(nγ) = − = − = − = (e βνn − 1)−1 = 
l ˜ν Z ∂β e−βνn

l ˜ν Z ∂β lν ∂β 1−

The average displacement is then 

g g e−βν  
l l

n

(δx) = − (nγ) = 
m ω2 

− 
mcω2 

c c c 1− e−βνn
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|

∑

√

√

∣

∣
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Problem 4: Radiation Pressure from a Laser 20 points 

a) Consider laser light (represented by a coherent state |α) of the e.m. field) hitting a cantilever, which is initially in 
a number state |nc). What is the transition rate, W = 2π | (f |T |i) 2

n
| δ(Ef − Ei), to a state |f) = |β ) |nc − 1)? 

[Here |β) is another coherent state of the e.m. field and the interaction between e.m. field and cantilever is the same 
as considered above, V = lg(a†a)x̂] 

Solution: 

The transition rate is 

2π 2π 
W = | (f |V |i) |2δ(E − E ) = | (β, n − 1|V |α, n ) |2 E− f i c c δ( f 

l
− Ei)

l 

The matrix element is 

l l (β, nc − 1|V 
√|α, nc) = lg 

 

(β| a†a |α) (nc − 1
2

| b |nc) = lg

 

β ∗ α
mωc 2mωc 

(β|α) nc

Taking the absolute value, we have 

2π 2 
lg

W = nc α− 
2mωc 

| | |  2 β|2 e−|α−β|2δ(Ef − Ei)

b) Is it more probable for the system to make a transition to a state |nc − 1) or |nc + 1)? In other words: is it more
 
probable that the laser is cooling down or heating up the cantilever?
 

What is the most probable final state for the e.m. field?
 

Solution: 

The transition rate to the state |nc + 1) is calculated in the same way as above, except we need to take the matrix 
element, (nc + 1| b |nc) = 

√ 
nc + 1. Thus the rate is 

W = 2πlg 2(n + 1)|α|2|β|2 + c e−| −β|2 α δ(Ef − Ei) 

Thus the rate W+ > W . On average, we will have more transition that increase the excitation number of the −
cantilever. Since the temperature of the cantilever is related to its occupation number by (n) = e −βωcn kbT 

1−e−βωcn ≈ 
n

, the ω
cantilever is heated up.
 

c 

The transition probability is also proportional to | |2|β| −| − |2 
α 2e α β which can be maximized to find the optimal β. Note
 

that since β is a complex number, caution must be taken to find the maximum.
 

c) What is the transition rate to a final state |α, nc − 2)? 

Solution: 

Note that in this case there is not transition to first order, but we can expect a transition to second order: 

2 
2π 

W2 = 
l

�

�

� (f |V |h) (h|V |i)
�

δ(E
� − f Ei) Eh Ei

�

h 

�

� −
�

Since the final state is |nc 2 , the intermedi

�

− ) ate state of the cantilev

�

er is |nc − 1). The intermediate state of the e.m. 
field can be taken to be the coherent state |β), thus we need to transform the sum into an integral: 

�

a†a | 2
2π α|  �

�

2 ( β) (β| a†a α
W2 = 

�

� d β
| ) �

� nc(nc − 1)δ(Ef − Ei)
l Eβ − Eα + lωc[(nc − 1)− nc] 

The energy of the e.m. field is E

�

β = (β| (a†a + 1 ) |β) = |β|2 + 1 . Thu

�

s we have 2 2

 2 
2π

W

�

e−|α−β|2

2 =

�

�

�

�

d2β
�

�

nc(nc − 1)δ(E − E
� | � i)

l l (| f 
ν β 2 − |α|2)− lωc � �
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Alternatively, we could have calculated W2 taking as intermediate states the number states |n): 
� 2 

2π �� (α| a†a (n| a a 
W2 = 

l l

|n) † |α)
 

�

�

�

n
� − −

�

� c(n− c 1)δ(Ef Ei)
En Eα + ω

− −
� c[(nc 1) nc]n 

The sum is 

�

 
� n2| (α

l

| a†a |n) |2 n2e−|α|2|α|2n 
= 

ν(n 
n

− |α|2)− lωc 

�

n![lν(n − |α|2)− lωc]n 
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