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22.51 Quantum Theory of Radiation Interactions 

Mid-Term Exam 

October 31, 2012 Name: . . . . . . . . . . . . . . . . . .  

In this mid-term we will study the dynamics of an atomic clock, mF 
which is one of the applications of David Wineland’s research (No­

bel prize in physics 2012). We consider a simplified (and sometime 

inaccurate) model of a vapor-cell atomic clock1 . 

Light from a lamp passes through a vapor of rubidium atoms housed 

in a glass cell and is detected by a photodiode. The light intensity 

transmitted by the vapor is used to lock the frequency of an RF sig­

nal to an atomic transition. The atomic resonance that forms the 

basis of the Rubidium clocks operation is the transition between two 

hyperfine states F = 1, 2 of 87Rb (see figure). 
measure 

t 
0 tµw t0 

Problem 1: Rubidium Atomic Clock 30 points 

a) Specifically, we monitor the frequency ω, corresponding to the energy difference between the Zeeman sub-levels 

mF = 0 of the hyperfine angular momentum levels F = 1, 2.
 

Formulate the simplest model that describes this atomic clock: What is the Hilbert space? What is a good basis? What
 

is the Hamiltonian of interest?
 

Solution: 
We can identify |0) = |F = 1,mF = 0) and |1) = |F =2,mF =0) as the basis for a two-level Hilbert space, with 

Hamiltonian: 

H0 =  ωσz/2 

I will in the following assume  = 1. 

b) The atom is assumed to be at time t = 0 in the state |F =2,mF =0). We turn on a transverse microwave field
 

By(t) = Ω cos(ωt) (on resonance with the |F =1,mF =0) ↔ |F =2,mF =0) transition).
 

What is the total Hamiltonian?
 

The field is turned on only for a time for a time tµw = π/(2Ω). Assuming Ω ≪ ω, what is the state of the atom at
 

t = tµw?
 

Solution: 
The microwave is represented by the Hamiltonian 

Hµw = Ωσy cos(ωt) 

thus the total Hamiltonian in the Schrödinger (or laboratory) picture is 

ω H = H0 + Hµw = σz +Ωσy cos(ωt)
2 

1For a more accurate description, see e.g. J. Camparo, “The Rubidium Atomic Clock and Basic Research”, Phys. Today 60, 33-39 (2007) 
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We can move into an interaction picture defined by H0. Then the Hamiltonian is given by 

Ω Ω Ω HI = σy + σy cos(2ωt)
2

≈ σy
2 2 

Thus, taking the rotating wave approximation, since Ω ≪ ω, the total Hamiltonian in the interaction picture reduces 
Ωto H = σy .2
 

1
Evolving the state |1) for a time π/(2Ω), we have |ψ)I = √ (|1) − |0)). In the laboratory (or Schrödinger ) picture
2

this corresponds to 

|ψ) = e −iωtµwσz/2
1

(e iωtµw/2
S |ψ)I = √ 

2
|1) − e −iωtµw/2|0))

c) At time t = tµw we turn off the microwave and let the atom evolve under its internal Hamiltonian for a time 

t = t0 − tµw. We then measure the operator M : 

M = |F =1,mF =0)(F =2,mF =0|+ |F =2,mF =0)(F =1,mF =0| . 

What is the signal we acquire at time t0? 

Solution: 
The state at t0 − tµw is 

1 |ψ(t )) = e −iω(t0−tµw/2)σz |ψ) = √ (e iωt0/2|1) − e −iωt0/2
0 S |0))

2

What we measure is σx = |0)(1|+ |1)(0|, yielding S(t0) = − cos(ωt0).
 

Note that if the measurement is also applied in the interaction frame (and this is indeed the usual case) the signal would
 

have been S(t0) = −1 (unless the pulse was applied off-resonance).
 

Problem 2: Optical pumping 40 points 

a) We assumed above that the initial state of the atom was |F = 2,mF = 0). In reality we have an ensemble of atoms 

at thermal equilibrium. Specifically, their kinetic energy corresponds to kBT ≈ 40meV, while the energy difference 

between the two levels of interest is ΔE ≈ 20µeV. What is the initial state of the atomic ensemble? 

[Write a formal expression for the state and then take the first order approximation in ǫ = ΔE/(kBT )] 

Solution: 
Since we’re at thermal equilibrium, it is represented by a mixed state in the macrocanonical ensemble: 

1 −β 1 H − ΔE σz 1 ǫ 
ρ = e = e k T 2B ≈ (11

Z
− σz)

Z 2 2 

b) What would be the signal in this case? 

Solution: 
We can follow the same evolution as before. The signal was 

S(t0) = (ψ|σx|ψ) = Tr {σx|ψ)(ψ|} 

Now we just have to replace |ψ)(ψ| with the new state. We calculated that the microwave irradiation corresponds to a 

π/2 rotation about the y axis. Thus we have at t = tµw 

1 ǫ 1 ǫ
ρI = (11 − σx) → ρS = e −iωtµwσz/2ρ  iωtµwσz/2

Ie = (11 − [σx cos(ωtµw) + σy sin(ωtµw)]),
2 2 2 2

where I used the well known rotation about the z-axis of σx.
 
ǫ Since the identity is not contributing to the signal, we have S(t0, ǫ) = − cos(ωt0). The signal is thus very small, as
2 

ǫ is small. 
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c) Because for a thermal state the signal is very small, we want to polarize the atomic ensemble. To do so, we send a 

continuous stream of light into the atomic ensemble.
 

The light is thus the “environment” with ground state |1) (one photon). When the atom interacts with the light, it can
 

absorb one photon with probability p, only if the atom is in the state |F =1,mF =0) (and causing a transition to the
 

state |F =2,mF =0)).
 
Write Kraus operators describing this process. 

Solution: 
The process described is the following: 

U |11) = |11)
U = 

√ |01) p |10)+ 1− p |01) 
Thus the Kraus operators are 

y

M1 = |1)(1|+
y

1− p|0)(0|, M2 = 
√ 
p|1)(0| 

d) If the initial, thermal state is what you found in question (a), what is the state after applying once this process? 

Solution: 
 

tate as ρ 
 

We can write the s = 1−ǫ ′ |0)(0|+ 1+ǫ ′ |1)(1|. Applying the Kraus sum, we have:2 2 

1− ǫ ′ 1 + ǫ ′ 1− ǫ ′ 1− ǫ ′ 1 ǫ ′ 
ρ ′ = (1− p)|0)(0|+ [ + p ]|1)(1 = 

−| (1− p)|0)(0|+ [1 
2 2 2 2 

− (1− p)]|1)(1
2 

|

Thus, while the population in the ground state decreases, the population in the excited state increases: indeed, the 

absorption of photons create a population inversion, with a higher probability of the atom to be in the excited state. 

e) Assuming that the probability of photon absorption in a small time δt is δp = Γδt, what is the state at a time 

tn = nδt? 

Solution: 
From the expression above we see that at each application of the Kraus map, the population of the zero state reduces 

by a factor 1− p. Thus after n repetitions of the map, we expect to have the state 

1 ǫ ′ 1 ǫ ′ 
ρ n 
n = (1 δ

− −− p) |0)(0|+ [1 − (1− δp)n ]|1
2 2 

)(1|,

where I used the requirement of having trace 1 to simplify the calculations. Using the definitions of δp and n given 

above, we have 

tn/δt 
1− ǫ ′ 1 + ǫ ′ 

ρn = (1− δtΓ) |0)(0|+ [1 − (1− δtΓ)tn/δt ]|1)(1|,
2 2 

which for δt → 0 gives an exponential decay, with a state 

1− ǫ ′ 1 + ǫ ′ 
ρ(tn) = e −Γtn |0)(0

2
|+ [1 − e −Γtn ]|1)(1

2 
|

f) What would be the signal if we take this as the initial state before performing the evolution described in the previous 

question? 

Solution: 
We can rewrite the state found above as 

11 1 ǫ 
ρ(t Γtn 

n) = − [1 − (1− )e − ]σz
2 2 2

Thus we have a signal as calculated in Question b, but replacing ǫ/2 with the value 1− (1− ǫ )e−Γtn ,2

ǫ
S(t0, tn) = −

[

1−
(

1− 
)

e −Γtn 

]

cos(2ωt0). 
2

For tn → ∞ we recover the signal S(t0, tn) ≈ − cos(2ωt0) that we had for an initial pure state. 
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Problem 3: Clock Accuracy Limit 30 points 

We go back to the evolution described in Problem 1, but we now consider a more realistic system. Specifically, we 

take into account that the atoms collide with the wall of the glass cell. Each collision randomizes the phase of the 

atomic state. 

a) We can model the collisions as causing a “jump” of the phase described by the operator 

y

Γ2 |F =2,mF =0)(F =2,mF =0| . 

Write a differential equation describing the system’s evolution between time tµw and t0. 

Under which assumption(s) is this equation valid? 

Solution: 
The jump corresponds to a Lindblad operator L =

√ 
Γ2|1)(1|. We have the Lindblad equation 

d ρ 1 
= i[H0, ρ]− LρL† + (L†Lρ + ρL†L)

d t 2

d ρ 1 1 0 
= i[ 0, ρ] Γ2( 1 ρ 1 1 1 ρ 1 1 1 1 ρ) = iω 

� 

(0|ρ|1) 0 (0|ρ|1)
d t 

H − ( | | )| )( | − 
2

| )( | − 
2
| )( |

1 ρ 0 0 

� 

− Γ

� 

−( | | ) 2 (1|ρ 0 

� 

|0) 

We can write a Lindblad equation only if the noise process is Markovian (memory-less). For this particular physical 

model this means that in each collision with the wall the phase is changed at random and there is no correlation 

between the phase change in different collisions. 

b) Assume that tµwΓ2 ≪ 1, so that there are no collision during the rf pulse time (and we can consider the same 

evolution as in Problem 1 and the same state at t = tµw). What is the state at time t0? What is the signal? 

Solution: 
1 1The state we had found at time t = tµw was |ψ)I = √ (|1) − |0)) or |ψ) = √ (eiωtµw/2 iωtµw

S |1) − e− /2|0)). We 
2 2

study the evolution under H0 and the collisions of this state, 

1
� 

1 −e−iωtµw/2

ρ(tµw) = 
2 iωtµw/2

� 

−e 1 

From the Lindblad differential equation above, we have 

 

ρ̇
 00 = ρ̇11 = 0 
ρ̇01 = (iω − Γ)ρ01 



ρ̇10 = −(iω + Γ)ρ10, 

where I defined ρij = (i| ρ |j). Thus at a time t0 we have 

1
� 

1 e−iωt0/2e−Γ2t0 1 
ρ(tµw) = 11iωt0/2 Γ2t0

−
� 

= 
�

− [σx cos(ωt0) + σy sin(ωt0)]e
−Γ2t0

2 −e e− 1 2 

�

[Note that more precisely I should have written e−Γ2(t0−tµw) but as assumed above I neglect the term tµwΓ2 ≪ 1] 

c) A measure of the accuracy of a clock is the ratio of its signal mean frequency ν to its spread in frequency Δν, 

Q = ν . Given the Fourier transform of the signal you found above, what is Q? What constraint does this impose onΔν
the rate of collision? 

Solution: 
The signal we would measure in the presence of collisions is S(t0) = − cos(ωt0)e

−Γ2t0 , with Fourier Transform a 

Lorenztian centered around ω0 and width Γ2. We thus have ν = ω and Δν = Γ2. Thus we want the rate of collision 

to be much smaller than the clock frequency. This is obtained using a buffer gas. 
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