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Problem Set 6 
 
NOTE: Due on the 9th, not 10th as on the version passed out in class. Also, see hints for 
Problems 1 and 2 on page 6. 
 
Problem 1. 
 
The analogy between Alfvén waves and waves on a stretched string is often made. In the latter case the 

relation between ω  and k is 
ρ

ω Tk= where T is the tension in the string and ρ is the line density of 

the string (mass per unit length.) 
 
a) Making the analogy between a circular tube of flux and the string, what would be the analogous ω-k 
relation for Alfvén waves? 
 
b) The obvious answer from part a) differs from the Alfvén speed by a factor of 2 . This difference is 
the result of ignoring the force on the flux tube due to the side pressure of the B

r
field. Assume the flux 

tube has a perturbation proportional to )sin( tkz ω− . Calculate the restoring force density acting on the 
side of the tube and show, by adding it to the tensile force, the correct Alfvén speed is found. 
 
Problem 2. 
 
The ideal MHD equations together with the appropriate form of Maxwell’s equations are: 
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As we have seen in class, the linearized version of these equations supports undamped Alfvén waves in 
a homogenous plasma immersed in a uniform magnetic field. For example, with the 0ˆBzB =

r
E
r

-field 
in the shear wave can be written 
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where AA ck /ω= and cA is the Alfvén speed. 
 
If the conductivity of the plasma is considered to be large but finite, the only modification to the above 
ideal equations is in the Ohm’s law, which takes the form 
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As expected, the resistivity leads to damping of the Alfvén wave, as you are asked to show in this 
problem. 
 
a) Assume the equilibrium plasma is homogenous, and without current or flow. Specifically assume 
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where the quantities labeled with a subscript 0 are constants while the quantities labeled with subscript 
1 are small perturbations. Write down a complete linearized set of equations for the perturbed 
quantities.  
 
b) Assume that we are interested in waves with space-time dependence given by ).exp( tirki ω−⋅

rr
In 

the absence of resistivity, the perturbed magnetic field is given by 
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In the presence of resistivity, the perturbed magnetic field can be written in the form 
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Determine  .∗ω
 
c) Again in the absence of resistivity, the velocity is determined by solution to the equation 
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where we have taken the equilibrium magnetic field to be in the z-direction. In the presence of 
resisitivity, the same equation applies, but with  and . Determine  and . ∗⇒ AA cc ∗⇒ SS cc ∗

Ac ∗
Sc

 
d) By making the substitution suggested in part c), determine the dispersion relation of the shear 
Alfvén mode propagating in the direction of 0B

r
 with 0BV

rr
⊥ , including the effect of resistivity. 

 
e) Assume that ω is real (corresponding to a source of this frequency.) Then, for the wave considered 
in part d), , where k)(ˆ ir ikkzk +=

r
r and ki are the real and imaginary parts of the wavenumber. 

Determine kr and ki. 
 



 
Problem 3. 
 
In this problem, we’ll analyze the m=0 stability of the straight z-pinch shown below. The plasma is 
assumed to obey the usual z-pinch equilibrium, and there is no 

equilibrium flow. Modes having the form 
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rr will be examined for their stability. 

For simplicity, we’ll make the assumption that the plasma is incompressible, i.e., , and 
assume the simple boundary condition 

0=•∇ vr

0)( =aVr where a is the column radius. 
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a) The perturbed magnetic field is given by 
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Using this relation and the incompressibility assumption, show that  
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b) The momentum equation can be written in the form 
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By evaluating the terms on the right, show that the momentum equations become 
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c) Combine the results of parts a) and b) together with the constraint 0=•∇ V
r

to get a single, second 
order differential equation for . Put your result in the form )(rV

r
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d) By multiplying the result obtained in part c) by and integrating from r = 0 to r = a (where VrrV r is 
assumed to vanish), show that the plasma will be unstable if   
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for 0 < r < a. 
 
Interpreting the above condition in terms of particle drifts leads to an apparent paradox since this 
requires the net particle drift (grad B plus curvature) to be in the –z direction, which would be 
stabilizing according to the picture developed in class. The paradox can be resolved by calculating the 
energy involved in the perturbation. One can show that this is proportional to  
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It is interesting to note that both of these terms arise from field line curvature; thus arguments based 
only on “bad” curvature are incomplete and one must consider stabilizing as well as destabilizing 
effects of curvature to properly examine stability of MHD equilibria. (Nevertheless, a region of bad 
curvature is necessary for MHD instability.) 
 

e) If 02
0

2

<′+ μθ p
r
B  for 0 < r < a, the energy argument shows that the plasma will be unstable. Show 

that this condition is equivalent to that found in part d). 
 



 
Hints for Problem Set 6 

 
Problem 1: Consider a flux tube with circular cross-section of radius a, where ka /2π<< . Let the 
displacement of the tube be given by )sin(0 tkzyy ω−= , where  .10 <<ky One can show (you don't 
need to) that the restoring force per unit length due to side pressure, i.e., pressure on the periphery, is  
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where R is the radius of curvature of the field line. (We used this in the calculation of toroidal 
equilibrium (10/19 notes, page 6), but I skipped over the derivation.) Evaluate R and add to the 
restoring force due to the force per unit length due to the field line tension to get the equation of 
motion of the flux tube. 
 
Problem 2: With the wave time-space dependence given by ),exp( tirki ω−•

rr
 a time derivative can be 

replaced by - ωi  and the grad operator by ki
r

. So for example, 
 

fkif
r

=∇ , 
 

AkiA
rrr

•=•∇ , 
 

AkiA
rrr

×=×∇ , 
 

etc. If this is the first time you have seen this, it would be worth a few minutes to convince yourself of 
these relationships. 
 
 
 

 
 

 


