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1.0 Review of Electromagnetic Field Theory 
 
Selected aspects of electromagnetic theory are reviewed in this section, with emphasis on 

concepts which are useful in understanding magnet design.  Detailed, rigorous treatments 

are presented in standard texts on the subject. [1,2,3] 

 
1.1 General Form of the Equations 

The concepts of electric and magnetic fields are related to the observation of forces  

experienced by an electric charge.  A charge of q coulombs moving with velocity v can  

experience a force independent of its velocity and perpendicular to it. The total is the 

Lorentz force F  which can be expressed as 

 

( )BvEqF ×+=      (1.1) 

This serves to define the electric field intensity E  and the magnetic flux density B  in 

terms of the charge q, the velocity of the charge relative to the observer v , and the total 

force experienced by the charge F .  Consider a volume element V∆  which contains 

charges.  If a charge density ρ, is defined as the limit of the ratio of the charge contained 

in V∆ to V∆ as V∆ → 0, and if a force density f  is defined as the limit of VF ∆ as 

V∆ → 0, then (1.1) becomes 

 

BvEf ee ×+= ρρ      (1.2) 

The quantity veρ represents a charge density in motion which is a current density J .  

Throughout these notes it is implicitly assumed that there is no relative motion of 

components: therefore, convection currents which result from the motion of conductors 

are neglected.  Equation (1.2) can therefore be written as 

 

BJEf e ×+= ρ      (1.3) 

 

The first term of this equation represents a force on static charges whereas the second is a 

force on moving charges or currents.  In problems associated with magnet design, the 
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interactions between currents and magnetic fields are of primary interest.  Forces due to 

the presence of free charge densities are usually negligible by comparison and (1.3) 

reduces to 

BJf ×=     (1.4) 

For any particular case, the validity of this approximation can be checked by evaluating  

Eeρ and comparing it with the result of (1.4). 

 

If it is postulated that charge must be conserved, the concepts of charge density and 

current density can be combined mathematically to represent a “law of conservation of 

charge” as follows 

 

∫∫∫∫∫ −=⋅ dV
dt
ddanJ eρ    (1.5) 

 

In (1.5) dan  is an incremental area element of a closed surface and n  is a normal, 

outwardly directed unit vector at the element.  The incremental volume element within 

the closed surface is dV.  Equation (1.5) therefore states that the net flow of charge out of 

the closed surface is equal to the rate of decrease of total charge within the enclosed 

volume.  In the structural and electrical problems associated with magnet design, free 

space charge densities can usually be neglected and thus (1.5) reduces to 

 

0=⋅∫∫ danJ      (1.6) 

The equivalent differential form of (1.6) is  

 

0=⋅∇ J      (1.7) 

Equations (1.6) and (1.7) normally enter magnet design problems implicitly rather than 

explicitly. Simply interpreted, both equations require that lines of current must form 

closed loops to be physically realizable. 
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The other conditions for physical realizability of the electric and magnetic fields were 

formulated by Maxwell as follows 

danB
dt
dldE ∫∫∫ ⋅−=⋅     (1.8) 

danJdanE
dt
dldH o ∫∫∫ ∫∫ ⋅=⋅−⋅ ε   (1.9) 

The first integral in each equation is taken around a closed contour having an incremental 

length ld .  The area integrals are taken over a simply connected surface bounded by a 

contour.  The quantity H  is the magnetic field intensity which in free space (that is, 

when magnetizable material is not present) is related to the magnetic flux density through 

HB oµ= . 

 

The magnitude of the constant oµ  is dependent on the system of units employed.  This 

quantity is the permeability of free space or vacuum, and has the value of 4π×10-7 H/m in 

the SI system.  The constant oε  is permittivity of free space which is a derived quantity. 

In SI units oε  has a value of 8.854×10-12 F/m. The differential form of these equations is 

t
BE
∂
∂

−=×∇     (1.10) 

J
t
EH o =
∂
∂

−×∇ ε     (1.11) 

The second term in (1.9) and its counterpart in (1.11) represent what is called the 

displacement current.  These terms are usually negligible in magnet design problems, as 

discussed in Section 1.2  Equations (1.9) and (1.11) therefore reduce to  

 

∫∫∫ ⋅=⋅ danJldH     (1.12) 

JH=×∇      (1.13) 

If the divergence of (1.10) is taken, the result is 
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( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⋅−∇=×∇⋅∇
t
BE    (1.14) 

However, since the divergence of the curl of any vector field is zero, and since the 

divergence and time operators are commutative, (1.14) becomes 

 

( ) 0=⋅∇
∂
∂ B
t

    (1.15) 

Equation (1.15) can be integrated with respect to time to yield 

 

     constant=⋅∇ B     (1.16) 

Therefore, the divergence of B  is a quantity independent of time.  Experimental evidence 

shows that this constant is zero.  The last of the equations for physical realizability is 

therefore 

     0=⋅∇ B      (1.17) 

Note that this is a direct consequence of (1.10).  In integral from, (1.17) can be expressed 

as 

∫∫ =⋅ 0danB     (1.18) 

A simple interpretation of (1.17) and (1.18) is that magnetic flux lines must form closed 

loops to be physically realizable (no magnetic monopoles!). 

 

Either the integral equations 91.6), (1.8), (1.12), and (1.18), or the differential equations 

(1.7), (1.10), (1.13), and (1.17) form the set of governing equations of interest in magnet 

design.  The reduction of these equations or of the more general equations with 

displacement current terms to magnetostatics can be done directly by setting all terms 

involving a time derivative to zero.  The conditions under which the displacement current 

terms can be neglected even though the situation involves variations in time is discussed 

in the following section. 
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1.2 Reduction to Magnet Systems and Magnetostatics 

In order to illustrate conditions under which the displacement current term can be 

neglected, consider a region of space where 

 

HB oµ=      (1.19) 

EJ σ=      (1.20) 

That is, the magnetic flux density is related to H  through the constant oµ  and the current 

density J  is related to the electric field intensity E  through the constant σ , which is the 

electrical conductivity. 

 

If the curl of (1.11) is taken and (1.19) and (1.20) are used, then 

 

   ( ) ( ) ( )E
t

JB ooo ×∇
∂
∂

+×∇=×∇×∇ εµµ   (1.21) 

This can be rewritten using (1.10) and (1.20) as follows 

 

( ) 2

2

t
B

t
BB ooo ∂

∂
−

∂
∂

−=×∇×∇ εµσµ    (1.22) 

This can be reduced using a vector identity† and (1.17), as follows 

 

   02

2
2 =

∂
∂

−
∂
∂

−−∇
t
B

t
BB ooo εµσµ    (1.23) 

 

This is a wave equation which governs the behavior of the magnetic flux density B in 

materials with homogeneous isotropic conductivity and the permeability and permittivity 

of free space.  Similar equations govern E and J .  Equation (1.23) forms the basis for\ 

study in areas such as waveguides and transmission lines. For the structural and electrical 

problems encountered in magnet design, the last term in (1.23) can be neglected which 
                                                 
† ( ) BBB 2∇−⋅∇∇=×∇×∇  
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reduces (1.23) to a diffusion equation.  If the configuration being analyzed is also time 

invariant or varying slowly with time, then the second term can also be dropped which 

reduces the equation to the vector form of Laplace's equation. It is important to retain 

the distinction that it is the vector form. 

 

The physical conditions under which some of the terms of (1.23) be neglected can be 

illuminated by casting the equation in dimensionless form. This can be accomplished by 

defining the following dimensionless variables. 

oBBB =ˆ  

lzlylxzyx ,,ˆ,ˆ,ˆ =  

∇=∇ lˆ  

tt ω=ˆ   

=oB characteristic magnetic flux density 

=l characteristic length 

=ω characteristic frequency 

If the above are substituted in 91.23) and terms rearranged, the result is that 

 

   0ˆ
ˆ

ˆ
ˆˆˆ

2

2
2222 =
∂
∂

−
∂
∂

−∇
t
Bl

t
BlB ooo ωεµσωµ   (1.24) 

The functional form for the solution of the dimensionless magnetic flux density is 

therefore 

    22,ˆ,ˆ,ˆ,ˆ(ˆˆ ltzyxBB oo ωεµ=    (1.25) 

The solution is thus dependent on the dimensionless space and time variables as well as 

two additional dimensionless parameters.  These two parameters describe the relative 

strength or importance of the second and third terms in comparison with the first term in 

the governing equation. 

 

For example, consider the parameter associated with the third term of (1.24).  This 

parameter can be rewritten using the fact that 21 coo =εµ  where c is the velocity of light 

which is equal to the speed of an electromagnetic wave in free space.[4] 
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     2

22
22

c
lloo

ωωεµ =     (1.26) 

lf l  is a characteristic length of the component or material under consideration then cl  

is the time required for the propagation of an electromagnetic disturbance or wave across 

this length.  If the characteristic frequency ω  with which the field is changing at a point 

is low, then the time ωπ2=t  associated with this change is long compared with the 

time required for propagation of the disturbance across the device to another point.  If the 

frequency is low enough then the disturbance is, in effect, felt everywhere in the device at 

the same time, and the wave character of the problem can be neglected.  That is, the third 

term in (1.23) can be ignored if 

 

      12

22

<<
c
lω     (1.27) 

This is usually the case in magnet design.  The third term in (1-24) is therefore neglected 

in the remainder of this section.  In addition, the neglect of this term is an implicit 

assumption which is made for the analyses throughout these notes.  The second terms of 

(1.9) and (1.11) are also neglected since they are the source of the wave character of the 

equation under discussion.  Equation (1.24) therefore becomes  

    0ˆ
ˆˆˆ 22 =

∂
∂

−∇
t
BlB oσωµ     (1.28) 

This is a diffusion equation in which the strength of the diffusion term is determined by 

the magnitude of the dimensionless parameter 2loσωµ .  This parameter is frequently 

called the magnetic Reynolds number.  If the conditions of a particular problem are such 

that 

     12 <<loσωµ     (1.29) 

then the fields are essentially static or steady state in nature and (1.28) reduces to 

     0ˆˆ 2 =∇ B      (1.30) 

This is the form of the governing equation for magnetostatics.  The concept of the 

magnetic Reynolds number is a useful tool which is considered in depth in a later section. 
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 1.3 Boundary Conditions 

The differential equations given in Sections 1.1 and 1.2 together with the constituent 

relations presented in Section 1.4 govern the relationship between the field variables in 

any region of space.  If several regions having different properties are involved, boundary 

conditions are required to determine how the fields cross the surface which separates one 

region from another.  These boundary conditions can be derived using the integral form 

of the equations given earlier.  Since the primary interest is in magnet design, only those 

constituent relations and boundary conditions which are necessary for use with (1.7), 

(1.10), (1.13), and (1.17) are considered.  

 

Two boundary conditions on the magnetic field must be considered, one to specify the 

relationship between the components of field normal to a boundary, and the other to 

specify the relationship between components tangent to a boundary.  These can be found 

from (1.18) and (1.12) respectively. 

 

First, (1.18) is applied to a small, closed cylindrical surface placed such that its faces are 

in two regions parallel to the boundary between regions, as shown in Figure 1.3-1. The 

dimensions of the cylinder are reduced about a point P located on the boundary which is 

within the cylindrical surface.  The result is a condition which requires that the 

component of B  normal to the boundary be continuous.  This can be expressed 

mathematically as 

     ( ) 012 =−⋅ BBn     (1.31) 

where 1B  and 2B  are the magnetic flux densities at P in Regions 1 and 2. respectively, 

and n  is a unit vector at P normal to the boundary and directed from Region 1 to Region 

2. 

The second boundary condition can be found by applying (1.12) to a contour which 

surrounds a small plane perpendicular to the boundary between Regions 1 and 2. as 

shown in Figure 1.3-2.  If n  is again a unit vector at P which is normal to the boundary 

and directed from Region 1 to Region 2, then shrinking the dimensions about P results in 
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     ( ) KHHn =−× 12     (1.32) 

 

where K  is a surface current density or current sheet which flows in the boundary.  This 

is often absent in practical problems but is useful in certain idealized models.  The 

boundary condition of (1.32) requires that the component of H  tangential to the surface 

be discontinuous at the boundary if a current sheet exists, and that the discontinuity in H  

be equal in magnitude to the surface current density and at right angles to it. 

 

 1.4 Constituent Relations 

In a typical magnetic field system, the conduction process accounts for the free current 

density in materials. The most common constituent relationship is Ohm's law, 

      

     EJ σ=      (1.33) 

 

where σ is the electrical conductivity.  The conductivity is typically assumed to be 

constant within a region, which requires that the conductivity in that region be 

homogeneous and isotropic.  Throughout these notes it is implicitly assumed that there is 

no relative motion of the magnet components being analyzed. 

 

Equation (1.33) is used in Section 1.2 together with the following constituent relationship 

which relates the magnetic flux density tot the magnetic field intensity in free space or in 

materials having the permeability of free space. 

     HB oµ=      (1.34) 

The simplest form of constituent relation for a magnetic material is to assume that the 

material is homogeneous and isotropic and that the field vectors are related by the 

permeability µ . which is constant, as follows 

 

     HB µ=      (1.35) 
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Often magnetic materials are used in which B  is not directly proportional H .  For 

these the constitutive relationship takes the form 

 

     ( )HHB µ=      (1.36) 

 

where HH = .  Some materials exhibit hysteresis which means that (1.36) is not single 

valued.  In some applications this effect can be important; however, for many magnet 

designs a single-valued functional dependence is usually adequate. Data from which 

(1.36) can be derived is given in one of several forms.  For example, the permeability 

may be plotted as a function of H , that is, µ  versus H .  Frequently, either B or the 

quantity ( )HB oµ−  will be plotted versus H . 

 

The concept of magnetization arises in electromagnetic theory when the magnetic field is 

considered as being generated by two sources, one associated with an applied current 

density J  which can be controlled directly, and the other associated with magnetizable 

material.  The magnetizable material can be considered to consist of a source of current 

density mJ  which is not controllable in that these magnetic currents cannot be circulated 

through an external circuit.  With these two sources, (1.13) becomes 

 

     m
o

JJB
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×∇

µ
    (1.37) 

If a magnetization density M  is defined such that 

     mJM =×∇      (1.38) 

 

then (1.37) can be rewritten as  

 

     JMB

o

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×∇

µ
    (1.39) 



11 of 18 

Comparison of this equation with (1.13) indicates that the magnetic field intensity H  can 

be written in terms of the magnetization density as 

 

     ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= MBH

oµ
    (1.40) 

 

Thus a plot of the quantity ( )HB oµ−  versus H  is the same as a plot of Moµ  versus H . 

  This is a convenient formulation because M  is frequently saturated when magnetic 

materials are used in large, high field magnets. 

 

A magnetic susceptibility χ  can also be defined such that 

     HM χ=      (1.41) 

The magnetic susceptibility is related to the permeability through 

     ( )χµµ += 1o      (1.42) 

 

 1.5 Potential Functions 

Potential functions can be used to reduce the number of variables or otherwise simplify 

the process of finding a solution to the governing equations.  The requirement of (1.17) 

that the divergence of B  be zero naturally leads to the definition of a vector potential A  

of the form 

 

     BA =×∇      (1.43) 

This formulation automatically satisfies (1.17) since the divergence of the curl of any 

vector field is zero.  For this analysis it is assumed that the constituent relations are given 

by (1.33) and (1.36).  These require that (1) any electrically conducting material be 

homogeneous and isotropic with a constant electrical conductivity and (2) any 

magnetically permeable material be homogeneous and isotropic but not necessarily 

linear, since the permeability can be a function of H .  It is assumed that this function is 
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single valued, which requires that hysteresis effects be negligible.  Equation (1.43) alone 

is not sufficient to define A : however, if 

     0=⋅∇ A      (1.44) 

is imposed a constraint, A  is fully defined. 

 

Substitution of (1.43) into (1.10) leads to 

     0=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+×∇
t
AE     (1.45) 

and to the definition of a scalar potential function φ .  This scalar potential automatically 

satisfies (1.45) since the curl of the gradient of a sclar function is zero.  Therefore 

 

     0=
∂
∂

−−∇=
t
AE φ     (1.46) 

Equations (1.46) and (1.33) can be used  with (1.7) to yield 

 

     0=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+∇⋅∇
t
Aφσ     (1.47) 

In addition, substitution of (1.33), (1.360, and (1.46) into (1.13) yields 

 

    01
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+∇+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×∇×∇

t
AA φσ

µ
   (1.48) 

Equations (1.47) and (1.48) are the two governing equations in terms of the two unknown 

potential functions A  and φ  which can be used in place of the field equations for E  and 

B . 

Equations (1.47) and (1.48) are the governing equations which should be used in the 

following manner for regions in which there are no current sources.  If, as is often the 

case, the current density distribution is known in a region and is the driver in the 

particular configuration then the governing equation for that region becomes 

     cJA =×∇×∇
µ
1     (1.49) 
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subject to (1.44).  Note also that cJ  must satisfy 0=⋅∇ cJ  to be physically realizable.  

Equation (1.49) drives the solution in the other regions, which are governed by (1.47) and 

(1.48). 

 

If the problem is two dimensional with a driving current density directed in the third 

dimension, the vector potential reduces to a single component in the direction of the 

driving current density.  From (1.49) the governing equation in the current-carrying 

region becomes  

 

     cJA −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇⋅∇

µ
1     (1.50) 

From (1.48) the governing equation in the other regions is 

 

     
t
AA
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇⋅∇ σ

µ
1     (1.51) 

The advantage in this situation is that the vector potential A  consists of a single 

component since cj  has only one component.  If the two-dimensional problem is further 

simplified to consist of a steady-state situation, (1.50) remains unchanged but the right 

side of (1.51) becomes zero. 

 

In a region of constant permeability µ , (1.13) and (1.43) require that 

     JA µ−=∇ 2  

In rectangular coordinates the components of this vector equation reduce to a scalar 

Laplacian, as follows: 

     xx JA µ−=∇ 2       

     yy JA µ−=∇ 2       

     zz JA µ−=∇ 2      (1.53) 

Note that each of these represents components of the vector equation (1.52) and that the 

vector form is equivalent to the scalar form of the differential equation only in 
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rectangular coordinates.  In other coordinate systems, (1.52) does not reduce to the simple 

form of (1.53). 

 

Each of the vector components must satisfy Poisson's equation which has a solution of 

the form[3] 

 

    ∫∫∫=
qp

i
i r

dVJ
A

π
µ

4
     (1.54) 

where zyxi or  ,,= and =qpr distance from point p where iA is measured, to point 

qwhere J is measured.   

 

This can then be written in vector form as  

 

    ∫∫∫=
qpr
dVJA

π
µ
4

     (1.55) 

where the integral is taken over the volume of the entire region.  Equation (1.55) leads to 

a physical interpretation of A .  Consider a closed circuit of small-cross-section wire 

which carries a current density J .  Outside the wire there is no contribution to the 

volume integral of (1.55) because 0=J .  Inside the wire, sIddVJ =  where I is the 

current and sd  is the length of the volume element in the direction of J . 

Equation (1.55) then becomes 

 

    ∫=
qpr
sIdA

π
µ

4
     (1.56) 

Therefore, the vector contribution to A  at a point by a current-carrying element in a 

closed circuit is parallel to that element. 

 

Equations (1.43) and (1.55) can be manipulated to show that[4] 
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( )

∫∫∫
×

= 24 qp

qp

r
dViJ

π
µB     (1.57) 

where qpi  is a unit vector directed from q  to p .  This equation is commonly called the 

Biot-Savart law. 

 

In magnetostatic problems, conditions are steady in time.  In current-free regions (1.13) 

becomes  

 

     0=×∇ H      (1.58) 

which is automatically satisfied by a scalar potential function defined by 

 

     φ−∇=H      (1.59) 

 

Equations (1.59) and (1.17) together with (1.35) imply that the field can be found by 

solving 

 

     02 =∇ ψ      (1.60) 

where ψ  is the magnetostatic potential. 

 

 1.6 Inductance and the Vector Potential 

The mutual inductance between two circuits b and c can be thought of as the flux linked 

by c per unit current in b with zero current in c.  Equation (1.43) defines the vector 

potential as 

 

     BA =×∇      (1.61) 

the integral form of this equation is 

 

     ∫∫∫ ⋅=⋅ danBldA
l

    (1.62) 
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where l  is a closed contour and the right-hand side is the flux through a simply-

connected area bounded by l . If the contour coincides with circuit c which has zero 

current and if the field B  and thus A  are generated by a current bI in circuit b, then the 

right side of (1.62) is the total flux generated by b and linked by c, as follows 

 

     ∫∫ Φ=⋅ bcdanB     (1.63) 

However, in linear systems 

     bbcbc IM=Φ      (1.64) 

where bcM is the mutual inductance between circuits b and c.  Therefore 

 

     cdA
I

M
c

b
b

bc ⋅= ∫
1     (1.65) 

The subscript is added to A in (1.65) to indicate that the vector potential is generated by 

the current bI  in circuit b although it is measured and integrated around circuit c which 

has zero current.  This relationship can be used to obtain accurate inductance calculations 

through numerical integration. 

 

 1.7 Electromagnetic Forces 

The force of electromagnetic origin is mentioned in Section 1.1 in connection with the 

definitions of E  and of B . In a magnet system, the electromagnetic loads are calculated 

by starting with (1.4) which gives the local force density f  on an element which carries 

a current density J  while immersed in a magnetic field B .  If the element and fields are 

such that J  and B  are uniform over the volume of the element as sketched in Figure 

1.7.1, then the net force on the element is 

 

     ( ) dl dwdh  BJF ×=     (1.66) 

If this incremental element is part of a larger volume of material carrying current in the 

magnetic field then the net force on any current-carrying volume or section can be found 

by integration as follows 
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    dl dwdh  ∫∫∫ ×= BJF     (1.67) 

 

This equation can be used to find the net force on a current-carrying body by performing 

a volume integration.  It can be useful to find the net force by performing an integral over 

a closed surface which surrounds the body.  This involves the use of the Maxwell Stress 

Tensor, which is given by[4] 

 

    kkmnmnmn HHHHT δµµ
2

−=     (1.68) 

Where 

    nmmn ==  when 1δ  

    nmmn ≠=  when 0δ  

 

and subscripts denote coordinate directions.  Repeated subscripts such as k imply a 

summation.   The mth component of the local force density is given by 

 

    
n

mn
m x

T
f

∂
∂

=       (1.69) 

 

and the net force on a body can be found from 

 

    danTF nmnm ∫∫=      (1.70) 

 

where nn , is the nth component of the outward-directed unit vector n normal to the closed 

surface surrounding the body. 

The use of (1.67) requires that the fields be known throughout the volume of integration 

whereas (1.70) requires that they be known only on the closed surface.  Furthermore, the 

closed surface can be considerably larger than the body on which the net force is desired.  
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This concept is particularly useful when the geometry of the problem is such that some of 

the components of the tensor or of the integrand in (1.70) are zero. 

 

It can be shown that the form of (1.68) through (1.70) are the same whether the fields are 

generated by free current densities J , by magnetized materials, or by a combination of 

these sources provided that the total field is used.  The permeability µ  must be isotropic, 

but can be a function of position.  Furthermore, the permeability cannot be a function of 

the material density although this magnetostriction effect can be included in (1.68) 

through an additional term.  These constraints are usually unimportant in fusion magnet 

systems. 
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