HW Solutions # 11 - 8.01 MIT - Prof. Kowalski

Universal Gravity.

1) 12.23 Escaping From Asteroid

Please study example 12.5 "from the earth to the moon".

a) The escape velocity derived in the example (from energy conservation) is:

$$v_{esc} = \sqrt{\frac{2Gm_A}{R_A}} \tag{1}$$

Where:

 $m_A \equiv \text{Asteroid's mass} = 3.6 \times 10^{12} \text{ kg}$

 $R_A \equiv \text{Asteroid's radius} = 700 \text{ m}$

 $G = 6.673 \times 10^{-11} \ \mathrm{Nm^2/kg^2}$

Plugging in these numbers into equation (1):

$$\boxed{v_{\scriptscriptstyle esc} = 0.83~m/s}$$

You can certainly walk that fast on earth. However, you could not walk on the asteroid faster and faster to achieve this speed because you would go into orbit at a lower velocity $(v_{esc}/\sqrt{2})$ at which point the normal force of the ground would be zero so there would be no more friction to accelerate you!

To get a feeling of how small this gravity is let's do some estimation of the time it takes to reach this velocity on the asteroid. The gravitational force $F_g = Gm_Am/R_A^2$ on the surface of planet for a mass, $m \sim 100$ kg is ~ 0.05 N. Let's take $\mu = 1$. The friction would be ~ 0.05 N so the acceleration $a \sim 0.05/100 = 0.0005$ m/s² and the time t it takes to reach $v_{esc} = 0.83$ m/s is:

$$t \sim \frac{0.83}{0.0005} = 1660 \text{ s} \sim 30 \text{ min}$$

 ${f b}$) The question is about the comparison with vertical leap on earth. Using:

$$v_y^2 - v_{0y}^2 = -2g_{\scriptscriptstyle earth}d$$

we have:

$$d = \frac{v_{0y}^2}{2gd} \approx 0.03m$$

$$\boxed{d \approx 3cm}$$

Even octogenarians can jump \sim 10 \times this length.

2) 12.24 Satellite's altitude and mass

 $m_S := \text{Satellite's mass.}$

 $m_E := \text{Earth's mass.}$

R := The distance between the *center* of earth and satellite.

 F_g :=the gravitational force between the two masses.

U :=the gravitational energy between the two masses.

a) F_g and U are given. By writing them in terms of m_S and m_E :

$$F_g = \frac{Gm_E m_S}{R^2} \tag{2}$$

$$U = -\frac{Gm_E m_S}{R} \tag{3}$$

you can eliminate R:

$$R = -\frac{U}{F_q} \tag{4}$$

With the numbers given in the problem (F=19.0 kN; U= -1.39×10^{11} J) you'll get:

$$R = 7.31 \times 10^6 \ m$$

To find the altitude above the earth denoted by ${\cal H}$ you should subtract it from Earth radius:

$$H = R - R_E = 7.31 \times 10^6 - 6.38 \times 10^6 = 9.3 \times 10^5 \ m$$

$$H = 9.3 \times 10^5 \ m$$

b) You can use the value of R and use either of (2) or (3) to find m_S :

$$m_S = -\frac{RU}{Gm_E}$$

Where $m_E = 5.97 \times 10^{24}$ kg:

$$m_S = 2.55 \times 10^3 \ kg$$

3) 12.46 Gravitation from 3 masses

Let's use three indices appropriate for 3 masses namely: $R_{ight} \equiv$ the mass at (0.5m, 0): $r_{PR} = 0.5 \,\mathrm{m}; \;\; m_R = 1.0 \,\mathrm{kg}.$ $U_p \equiv$ the mass at (0,0.5m): $r_{PU} = 0.5 \,\mathrm{m}; \;\; m_U = 1.0 \,\mathrm{kg}.$ $D_{iagonal} \equiv$ the mass at (0.5m,0.5 m): $r_{PD} = 0.5 \sqrt{2} \,\mathrm{m}; \;\; m_D = 2.0 \,\mathrm{kg}.$

a) Because of symmetry we expect to get the total F acting on P along the diagonal. We it more more generally though.

The three forces acting on mass P at origin are ($F_{PR} \equiv F$ acting on P from R):

$$\begin{split} \overrightarrow{\mathbf{F}}_{\scriptscriptstyle PR} &= + \frac{Gm_{\scriptscriptstyle P}m_{\scriptscriptstyle R}}{r_{\scriptscriptstyle R}^2} \hat{\mathbf{x}} \\ \overrightarrow{\mathbf{F}}_{\scriptscriptstyle PU} &= + \frac{Gm_{\scriptscriptstyle P}m_{\scriptscriptstyle U}}{r_{\scriptscriptstyle U}^2} \hat{\mathbf{y}} \\ \overrightarrow{\mathbf{F}}_{\scriptscriptstyle PD} &= + \frac{Gm_{\scriptscriptstyle P}m_{\scriptscriptstyle D}}{r_{\scriptscriptstyle D}^2} (\frac{\hat{\mathbf{x}} + \hat{\mathbf{y}}}{\sqrt{2}}) \end{split}$$

Where $\sqrt{2}$ comes from the projection of $\overrightarrow{\mathbf{F}}_D$ (which is oriented at 45° with respect to x axis) on x and y axis.

$$\overrightarrow{\mathbf{F}}_{_{P}}=\overrightarrow{\mathbf{F}}_{_{PR}}+\overrightarrow{\mathbf{F}}_{_{PU}}+\overrightarrow{\mathbf{F}}_{_{PD}}$$

Using the values given in the problem you'll get the magnitude:

$$F_P = 9.67 \times 10^{-12} N$$

which orients along the diagonal with unit vector $\hat{\mathbf{n}} \equiv \frac{1}{\sqrt{2}}(\hat{\mathbf{x}} + \hat{\mathbf{y}})$.

$$\overrightarrow{\overrightarrow{\mathbf{F}}}_{P} = 9.67 \times 10^{-12} N \hat{\mathbf{n}}$$

b) Use energy conservation

$$K_2 + U_2 = K_1 + U_1 \tag{5}$$

where 1 denotes the situation that mass P is 300m far away from origin. U_1 is practically "zero" at this large distance. (this distance is 2 orders of magnitude larger so within 1% approximation you can ignore U_1 :

$$K_{1} = 0 \quad U_{1} \approx 0$$

$$U_{2} = -Gm_{P}\left(\frac{m_{R}}{r_{PR}} + \frac{m_{U}}{r_{PU}} + \frac{m_{D}}{r_{PD}}\right)$$

$$U_{2} + \frac{1}{2}m_{P}v_{2}^{2} \approx 0$$

$$v_{2} = \sqrt{-\frac{2U_{2}}{m_{P}}}$$

The factor of m_P will be cancelled:

$$v_2 = \sqrt{2G(\frac{m_R}{r_{PR}} + \frac{m_U}{r_{PU}} + \frac{m_D}{r_{PD}})}$$
 (6)

Plugging the given numbers into (6):

$$v_2 = 30.2 \pm 0.3 \ \mu \text{m/s}$$

$$v_2 \approx 30 \ \mu \text{m/s}$$

NOTE: Gravity is a very weak force (e.g. compared with electrostatic forces), even if it had the speed v_2 for the entire journey, it would take ~ 1 year to make this trip. In In fact it will take ~ 1 year if no other forces (e.g. from sunlight forces) come into play.

3) 12.68 Gravitational Potential

a) From the definition given the units of ϕ is the unit of energy divided by mass. We use the convention "[]" to denote the units:

$$[\phi] = \frac{[U]}{[m]} = \frac{[m][v^2]}{[m]} = [v^2] = m^2/s^2$$

b) The gravitational potential energy of two masses m and m_E separated by a distance r (assuming Zero energy at infinity separation) is:

$$U = -\frac{Gm_E m}{r}$$

$$\phi = \frac{U}{m} \tag{7}$$

From the "definition"

we get:

$$\phi(r) = -\frac{Gm_E}{r}$$

c) The problem asks for the quantity

$$\Delta \phi = \phi(R_E + H) - \phi(R_E).$$

Where H denotes the altitude of the space station (400 km in this problem).

Using:

$$G = 6.673 \times 10^{-11} \text{ Nm}^2/\text{kg}^2.$$

$$m_E = 5.97 \times 10^{24} \text{ kg}.$$

$$R_E = 6.38 \times 10^6 \text{ m}.$$

$$H = 400 \times 10^3 \text{ m}.$$

You'll get:

$$\boxed{\Delta\phi = 3.68 \times 10^6 \ m^2/s^2}$$

d) If you assume that the initial and final velocities are "Zero" which is equivalent to a very gradual process. Using

$$K_i + U_i + W_{lift} = K_f + U_f$$

Here $K_i = K_f = 0$ and W_{lift} is the work that must be done against the gravity:

$$W_{lift} = U_f - U_i = m\Delta\phi$$

Using m=15,000 kg and the result of part (c) you'll get:

$$\Delta U = 5.53 \times 10^{10} \ J$$

e) To dock, you have to get up to the speed of the orbiting space station. So the K_f should be its final Kinetic energy as an orbiting payload. For a *circular orbit* we have: $K_f = -\frac{U_f}{2}^*$. Now going through the same procedure as part **d** but with $K_f = -\frac{U_f}{2}$:

$$W'_{orbit} = U_f - U_i + K_f = U_f - U_i - \frac{U_f}{2} = +\frac{U_f}{2} - U_i$$

$$\frac{W'_{orbit}}{W_{lift}} = \frac{U_f - U_i + K_f}{U_f - U_i} = \frac{+\frac{U_f}{2} - U_i}{U_f - U_i} = \frac{\frac{1}{2} - \frac{U_i}{U_f}}{1 - \frac{U_i}{U_f}}$$

$$\frac{U_i}{U_f} = \frac{r_f}{r_i} = \frac{R_E + H}{R_E} = 1 + \frac{H}{R_E} = 1.06$$

$$\therefore \quad \left[\frac{W'_{orbit}}{W_{lift}} = \frac{0.5 - 1.06}{1 - 1.06} = 9.33 \right]$$

So getting there is only $\sim 11\%$ of the work- most is getting up to orbit speed.

*.

$$F_r = ma_r \Rightarrow -\frac{Gm_Em}{r^2} = -\frac{mv^2}{r} \Rightarrow K = \frac{1}{2}mv^2 = \frac{Gm_Em}{2r} = -\frac{U}{2}$$

3) 12.70 Effect of Air Drag on Satellite's Motion

- **a)** In moving to a lower orbit by whatever means, gravity does positive work, and so the speed does increase.
- **b**) From Calculus you know that for a general function f(r) we have:

$$f(r - \Delta r) = f(r) - \frac{df(r)}{dr} \Delta r \Rightarrow \boxed{\Delta f = -\frac{df(r)}{dr} \Delta r}$$
 (8)

Where Δr is much smaller than r ($\frac{\Delta r}{r} \ll 1$).

From the expression for v(r) in *circular* motion:

$$v(r) = \sqrt{\frac{Gm_E}{r}}$$

$$\frac{d(r^{\alpha})}{dr} = -\alpha r^{\alpha - 1}$$
(9)

Combined with (8) you'll get:

$$\Delta v = +(\Delta r/2)\sqrt{\frac{Gm_E}{r^3}} > 0$$

Combining $K = 1/2mv^2$ with (8) and (9) you'll get:

$$\Delta K = +\frac{Gm_Em}{2r^2}\Delta r > 0$$

Combining $U == -\frac{Gm_Em}{r}$ with (8) and (9) you'll get:

$$\Delta U = -\frac{Gm_Em}{r^2}\Delta r$$

$$\Delta U = -\frac{Gm_E m}{r^2} \Delta r = -2\Delta K$$

Total energy is E = K + U so:

$$\Delta E = \Delta K + \Delta U = \Delta K - 2\Delta K = -\Delta K$$
$$W = \Delta E = -\Delta K < 0$$

c) Since $\Delta r = 50$ km is much smaller than R_E itself so you can safely use equation (8) for functions v, K and U. For the rest you should just plug in the numbers and use:

$$r = R_E + H = 6.38 \times 10^6 + 300 \times 10^3 = 6.68 \times 10^6 \text{ m}.$$

$$\Delta r = 50 \times 10^3 \text{ m}.$$

$$m = 3000 \text{ kg}.$$

$$v = \sqrt{\frac{Gm_E}{r}} = 7.72 \times 10^3 \text{ m/s}$$

$$\Delta v = +(\Delta r/2)\sqrt{\frac{Gm_E}{r^3}} = +28.9 \text{ m/s}$$

$$E = K + U = -\frac{Gm_Em}{2r} = -8.95 \times 10^{10} \text{ J}$$

$$\Delta K = +\frac{Gm_Em}{2r^2}\Delta r = 6.70 \times 10^8 \text{ J}$$

$$\Delta U = -2\Delta K = -1.34 \times 10^9 \text{ J}$$

$$W = -\Delta K = -6.70 \times 10^8 \text{ J}$$

As the term "burns up" suggests, the energy is converted to heat or is dissipated in the collisions of the debris with the ground.