- ⇒ Last Lecture
 - Potential Energy diagrams, Potential Energy of springs
- ⇒ Today
 - Conclusion of energy discussion
 - ⇒ The next important conservation law: Momentum
- Important Concepts
 - Momentum is a vector.
 - ⇒ Think carefully about internal versus external forces.

8.01L Fall 2005

Work/Energy Summary

- \Rightarrow $W = \Delta E = E_F E_I$ E = PE + KE $KE = \frac{1}{2}mv^2$
- $PE_{gravity} = mgy \quad PE_{spring} = +\frac{1}{2}k(L-l_0)^2$
- $\Rightarrow W = \int \vec{F} \cdot d\vec{s} \quad |W| = |F| |ds| \cos(\theta)$
- Every force goes in the work term or in the PE
- Minima and maxima of the PE correspond to F=0, which are equilibrium points. PE minima are stable equilibrium points, maxima are unstable.

8.01L Fall 2005 11/3/2005

Important Reminders

- ⇒Exam #2 is tomorrow at 10 am.
 - Covers material through last Thursday's lecture, last Friday's problem-solving and Pset, and Monday's MasteringPhysics assignment
- ⇒Q&A review session tonight 7-8:30pm
- MasteringPhysics due next Monday.
- ⇒ No class next Friday.
- ⇒ Pset #7 due next Thursday.

8.01L Fall 2005

11/2/2005

Momentum

- ightharpoonup Very simple formula: $\vec{p}_{Tot} = \Sigma(m_i \vec{v}_i)$
 - Note the vector addition!
- ⇒ This quantity is conserved, another fundamental property of our universe derivable from F=ma.
 - ⇒ I could also claim F=ma is derivable from momentum.
- Sometimes it is impractical to include the whole universe in the system under study.
- □ In this case, we say momentum is conserved only if:
 - ⇒ No net external forces acting on the system.
 - **○** Or, study the system only over a very short time span.

8.01L Fall 2005

1