
Chapter 11 Work and Kinetic Energy 

11.1 The Concept of Energy 

The transformation of energy is a powerful concept that enables us to describe a vast 
number of processes: 

Falling water releases stored gravitational potential energy, which can become the 
kinetic energy associated with a coherent motion of matter. The harnessed mechanical 
energy can be used to spin turbines and alternators, doing work to generate electrical 
energy, transmitted to consumers along power lines. When you use any electrical 
device, the electrical energy is transformed into other forms of energy. In a 
refrigerator, electrical energy is used to compress a gas into a liquid. During the 
compression, some of the internal energy of the gas is transferred to the random 
motion of molecules in the outside environment. The liquid flows from a high-
pressure region into a low-pressure region where the liquid evaporates. During the 
evaporation, the liquid absorbs energy from the random motion of molecules inside of 
the refrigerator. The gas returns to the compressor. 

“Human beings transform the stored chemical energy of food into various forms 
necessary for the maintenance of the functions of the various organ system, tissues 

1
and cells in the body.” A person can do work on their surroundings – for example, by 
pedaling a bicycle – and transfer energy to the surroundings in the form of increasing 
random motion of air molecules, by using this catabolic energy. 

Burning gasoline in car engines converts chemical energy, stored in the molecular 
bonds of the constituent molecules of gasoline, into coherent (ordered) motion of the 
molecules that constitute a piston. With the use of gearing and tire/road friction, this 
motion is converted into kinetic energy of the car; the automobile moves. 

Stretching or compressing a spring stores elastic potential energy that can be released 
as kinetic energy. 

The process of vision begins with stored atomic energy released as electromagnetic 
radiation (light), which is detected by exciting photoreceptors in the eye, releasing 
chemical energy. 

When a proton fuses with deuterium (a hydrogen atom with a neutron and proton for 
a nucleus), helium-three is formed (with a nucleus of two protons and one neutron) 
along with radiant energy in the form of photons. The combined internal energy of 
the proton and deuterium are greater than the internal energy of the helium-three. This 
difference in internal energy is carried away by the photons as light energy. 

1 George B. Benedek and Felix M.H. Villars, Physics with Illustrative Examples 
from Medicine and Biology, Volume 1: Mechanics, Addison-Wesley, Reading, 1973, p. 
5-116 



There are many such processes in the manmade and natural worlds, involving different 
forms of energy: kinetic energy, gravitational energy, thermal energy, elastic energy, 
electrical energy, chemical energy, electromagnetic energy, nuclear energy and more. 
The total energy is always conserved in these processes, although different forms of 
energy are converted into others. 

Any physical process can be characterized by two states, initial and final, between 
which energy transformations can occur. Each form of energy Ei , where “ i ” is an 
arbitrary label identifying one of the N forms of energy, may undergo a change during 
this transformation, 

!Ei " Efinal, i # Einitial, i . (11.1.1) 

Conservation of energy means that the sum of these changes is zero, 

N 

!E1 + !E2 + " " "+ !EN = #!Ei = 0 . (11.1.2) 
i=1 

Two important points emerge from this idea. First, we are interested primarily in 
changes in energy and so we search for relations that describe how each form of energy 
changes. Second, we must account for all the ways energy can change. If we observe a 
process, and the sum of the changes in energy is not zero, either our expressions for 
energy are incorrect, or there is a new type of change of energy that we had not 
previously discovered. This is our first example of the importance of conservation laws in 
describing physical processes, as energy is a key quantity conserved in all physical 
processes. If we can quantify the changes of different forms of energy, we have a very 
powerful tool to understand nature. 

We will begin our analysis of conservation of energy by considering processes 
involving only a few forms of changing energy. We will make assumptions that greatly 
simplify our description of these processes. At first we shall only consider processes 
acting on bodies in which the atoms move in a coherent fashion, ignoring processes in 
which energy is transferred into the random motion of atoms. Thus we will initially 
ignore the effects of friction. We shall then treat processes involving friction between 
rigid bodies. We will later return to processes in which there is an energy transfer 
resulting in an increase or decrease in random motion when we study the First Law of 
Thermodynamics. 

Energy is always conserved but we often prefer to restrict our attention to a set of 
objects that we define to be our system. The rest of the universe acts as the surroundings. 
We illustrate this division of system and surroundings in Figure 11.1. 



Figure 11.1 A diagram of a system and its surroundings with boundary 

Since energy is conserved, any energy that leaves the system must cross through 
the boundary and enter the surroundings. Consider any physical process that occurs 
between an initial state and a final state, in which energy transformations occur. Our 
statement of conservation of energy becomes 

!Etotal = !Esystem + !Esurroundings = 0 , (11.1.3) 

where 

!Esystem " Efinal,system # Einitial,system (11.1.4) 

is the change in energy of the system and 

!Esurroundings " Efinal,surroundings # Einitial,surroundings (11.1.5) 

is the change in energy of the surroundings. 

11.2 Kinetic Energy 

The first form of energy that we will study is an energy associated with the 
coherent motion of molecules that constitute a body of mass m ; this energy is called the 
kinetic energy (from the Greek “kinetikos,” moving). Let us consider a car moving along 
a straight road (along which we will place the x -axis). For an observer at rest with 
respect to the ground, the car has velocity v ! = vx î . The speed of the car is the magnitude 

of the velocity, v ! vx . 

Definition: Kinetic Energy 

The kinetic energy K of a non-rotating body of mass m moving with speed v is 
defined to be the positive scalar quantity 



K ! 
1 mv2 (11.2.1) 
2 

The kinetic energy is proportional to the square of the speed. The SI units for 
kinetic energy are [kg ! m2 ! s "2 ] . This combination of units is defined to be a joule 
and is denoted by [J] , thus 1 J ! 1 kg " m2 " s#2 . (The SI unit of energy is named 
for James Prescott Joule; the proper pronunciation of the unit “joule” is “jowl”, 
but the far more common usage is the incorrect “jool”.) 

The above definition of kinetic energy does not refer to any direction of motion, just the 
speed of the body. We will see that it is sometimes convenient to express Equation 
(11.2.1) in the equivalent form 

1 ! !K ! m v " v (11.2.2) 
2 

Let’s consider a case in which our car changes velocity. For our initial state, the 
car moves with an initial velocity v ! 0 = vx,0 î along the x -axis. For the final state (at some 
later time), the car has changed its velocity and now moves with a final velocity 
v ! f = vx, f î . Therefore the change in the kinetic energy is 

!K = mv f " 
1 2 1 mv0

2 (11.2.3) 
2 2 

11.2.1 Example: Change in Kinetic Energy of a Car 

(a) Suppose car A increases its speed from 10 to 20 mph and car B increases its speed 
from 50 to 60 mph. Both cars have the same mass m . What is the ratio of the change of 
kinetic energy of car B to the change of kinetic energy of car A? Which car has a greater 
change in kinetic energy? 

Answer: The ratio of the change in kinetic energy of car B to car A is 
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Thus car B has a much greater increase in its kinetic energy than car A. 



(b) What is the ratio of the change in kinetic energy of car B to car A as seen by an 
observer moving with the initial velocity of car A? 

Answer: Car A now increases its speed from rest to 10 mph and car B increases its speed 
from 40 to 50 mph. The ratio is now 
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The ratio is greater than that found in part a). Note that from the new reference frame 
both car A and car B have smaller increases in kinetic energy. 

11.3 Kinematics and Kinetic Energy in One Dimension 

Constant Acceleration Motion 

Let’s consider a uniform-accelerated motion of a rigid body in one dimension. We begin 
the discussion by treating our object as a point mass. Suppose at t = 0 the object has an 
initial velocity component in the x -direction given by vx ,0 . If the acceleration is in the 
direction of the displacement of the body then the body will increase its speed. If the 
acceleration is opposite the direction of the displacement then the acceleration will 
decrease the body’s speed. The displacement of the body is given by 

!x = v0 t + 
1 

ax t
2 . (11.3.1) 

2 

The product of acceleration and the displacement is 

1 
a !x = a (v0 t + a t2 ) . (11.3.2) x x 2 x 

The acceleration is given by 

a = 
!vx 

(vx , f " vx ,0 ) . (11.3.3) = x !t t 

Therefore 



(vx , f " vx ,0 ) #
% v0 t + 

1 (vx , f " vx ,0 ) t2 
&
( . (11.3.4) a !x = x t $ 2 t '

Equation (11.3.4) becomes 

ax !x = (vx , f " vx ,0 )(v0 ) + 
1

(vx , f " vx ,0 )(vx , f " vx ,0 ) = 
1 2 1 

vx ,0 
2 . (11.3.5) v " 

2 2 x , f 2 

If we multiply each side of Equation (11.3.5) by the mass m of the object this 
kinematical result takes on an interesting interpretation for the motion of the object. We 
have 

1 1 
ma !x = mv 2 " m v 2 = K f " Ki . (11.3.6) x 2 x , f 2 x ,0 

Recall that for one-dimensional motion, Newton’s Second Law is Fx = ma x ; for the 
situation considered here, Equation (11.3.6) becomes 

Fx !x = K f " Ki . (11.3.7) 

Non-constant Acceleration: 

If the acceleration is not constant, then we can divide the displacement into N intervals 
indexed by j = 1 to N . It will be convenient to denote the displacement intervals by !x j , 

the corresponding time intervals by !t j and the velocities at the beginning and end of 
each interval as vx, j!1 and vx, j . Note that the velocity at the beginning and end of the first 
interval, j = 1 is then v0 and the velocity at the end of the last interval, j = N is 
vx N = v j . , x, 

Consider the sum of the products of the average acceleration (a , j )ave and displacement x 

!x j in each interval, 
j=N 

" (ax, j )ave !x j . (11.3.8) 
j=1 

The average acceleration over each interval is equal to 

( x, j )ave = 
!
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vx, j ) , (11.3.9) a = 



and so the contribution in each integral can be calculated as above and we have that 

(ax, j )ave "x j = 
1 2 1 

vx, j!1
2 . (11.3.10) vx, j ! 

2 2 

When we sum over all the terms only the last and first terms survive, all the other terms 
cancel in pairs, and we have that 

j=N 

# (ax, j )ave !x j = 
1 2 1 

vx,0 
2 . (11.3.11) vx N " 

j=1 2 , 2 

In the limit as N !" and !x j " 0 for all j (both conditions must be met!), the limit of 
the sum is the definition of the integral of the acceleration with respect to the position,  
So Eq. (11.3.11) 

j=N final 

lim % (ax, j )ave #x j $ & ax dx . (11.3.12) 
N !"

#x j !0 j=1 initial


So in the limit as N !" and !x j " 0 for all j , with vx , N ! vx , f , Eq. (11.3.11) 
becomes 

final 

! ax dx = 
2
1 

(vx , f 
2 " vx ,0 

2 ) (11.3.13) 
initial 

This integral result is consequence of the definition that ax ! dvx / dt . Notice how Eq. 
(11.3.13) compares to the integral of acceleration with respect to time 

final 

! ax dt = vx , f " vx ,0 . (11.3.14) 
initial 

Multiplying both sides of Eq. (11.3.14) by the mass m yields 

final 1 1 
! ma x dx = 

2 
mv x , f 

2 " 
2 

mv x ,0 
2 # K f " K0 (11.3.15) 

initial 

When we introduce Newton’s Second Law in the form Fx 
total = ma x , then Eq. (11.3.15) 

becomes 

final 

" Fx total dx = K f ! Ki . (11.3.16) 
initial 



The integral of the total x -component of the force with respect to displacement in 
Equation (11.3.16) applies to the motion of a point-like object. (For extended bodies we 
shall see in Chapter 9 that Equation (11.3.16) applies to the center of mass motion 
because the total external force on a rigid body causes the center of mass to accelerate.) 

11.4 Work done by Constant Forces 

We will begin our discussion of the concept of work by analyzing the motion of an object 
in one dimension acted on by constant forces. Let’s consider an example of this type of 
motion: pushing a cup forward with a constant force along a desktop. When the cup 
changes speed (and hence kinetic energy), the sum of the forces acting on the cup must 
be non-zero according to Newton’s Second Law. There are three forces involved in this ! ! ! ! 
motion: the applied pushing force Fapplied ; the contact force C ! N + fk ; and gravity 

F 
! 
grav = mg ! . The force diagram on the cup is shown in Figure 11.2. 

Figure 11.2 Force diagram for cup. 

Let’s choose our coordinate system so that the +x -direction is the direction of the 
forward motion of the cup. The pushing force can then be described by 

F 
! 
applied = Fapplied,x î . (11.4.1) 

Definition: Work done by a Constant Force 

Suppose a body moves from an initial point x0 to a final point x f so that the 

displacement of the point the force acts on is positive !x " x f # x0 > 0 . The work 

done by a constant force F 
! 
applied = Fapplied,x î acting on the body is the product of the 

component of the force Fapplied,x and the displacement !x , 

Wapplied = Fapplied,x !x . (11.4.2) 



Work is a scalar quantity; it is not a vector quantity. The SI unit for work is 

[1 N m] = [1 kg ! ! -2 ][1 m] = [1 kg ! m2 !s-2 ]! m s = [1 J] . (11.4.3) 

Note that work has the same dimension and the same SI unit as kinetic energy. Since our 
applied force is along the direction of motion, both Fapplied,x > 0 and !x > 0 . The work 
done is just the product of the magnitude of the applied force and the distance through 
which that force acts and is positive. In the definition of work done by a force, the force 
can act at any point on the body. The displacement that appears in Equation (11.4.2) is 
not the displacement of the body but the displacement of the point of application of the 
force. For point-like objects, the displacement of the point of application of the force is 
equal to the displacement of the body. For the most part in the remainder of the chapter 
we shall consider point-like objects or we shall model an extended body as a point-like 
object however not always as the following question illustrates. 

Question 7.4.1 Suppose you are initially standing and you start walking by pushing 
against the ground with your feet and your feet do not slip. How much work is done on 
you by the static friction force? 

Answer: When you apply a contact force against the ground, the ground applies an equal 
and opposite contact force on you. The tangential component of this constant force is the 
force of static friction acting on you. Since your foot is at rest while you are pushing 
against the ground, there is no displacement of the point of application of this static 
friction force. Therefore static friction does zero work on you while you are accelerating. 
You may be surprised by this result but if you think about energy transformation, 
chemical energy stored in your muscle cells is being transformed into kinetic energy of 
motion and thermal energy. 

We can extend the concept of work to forces that oppose the motion, like friction. 
In our example of the moving cup, the kinetic friction force is 

f 
! 
friction = fx î = !µk N î = !µkmg î (11.4.4) 

where N = mg from consideration of the ĵ -components of force in Figure 11.2 and the 
model fk = µk N for kinetic friction have been used. 

Here the component of the force is in the opposite direction as the displacement. The 
work done by the friction force is negative, 

Wfriction = !µkmg "x . (11.4.5) 



Since the gravitation force is perpendicular to the motion of the cup, the 
gravitational force has no component along the line of motion. Therefore the gravitation 
force does zero work on the cup when the cup is slid forward in the horizontal direction.  
The normal force is also perpendicular to the motion, and hence does no work. 

We see that the pushing force does positive work, the friction force does negative 
work, and the gravitation and normal forces do zero work. 

11.4.2 Example: Cup on a horizontal table 

Push a cup of mass 0.2 kg along a horizontal table with a force of magnitude 2.0 N for a 
distance of 0.5 m. The coefficient of friction between the table and the cup is µk = 0.1. 
Calculate the work done by the pushing force and the work done by the friction force. 

Answer: The work done by the pushing force is 

Wapplied = Fapplied,x !x = (2.0 N)(0.5 m) = 1.0 J . (11.4.6) 

The work done by the friction force is 

Wfriction = !µk mg"x = !(0.1)(0.2 kg)(9.8 m # s-2 )(0.5 m)= ! 0.10 J . (11.4.7) 

Note that the result in Equation (11.4.6) is known to only one significant figure since µk 
is given to only one significant figure. However, the precision in Equation (11.4.7) and 
Equation (11.4.7), 0.1 J , is the same. 

11.4.3 Example: Cup on a table, applied force at an angle 

Suppose we push the cup in the previous example with a force of the same magnitude but 
at an angle ! = 30o upwards with respect to the table. Calculate the work done by the 
pushing force. Calculate the work done by the kinetic friction force. The force diagram 
on the cup is shown in Figure 11.3. 



Figure 11.3 Force diagram on cup. 

Solution: The x -component of the pushing force is now 

Fapplied,x = Fapplied cos(!) = (2.0 N)(cos(30! )) = 1.7 N . (11.4.8) 

The work done by the pushing force is 

Wapplied = Fapplied,x !x = (1.7 N)(0.5 m) = 8.7 " 10#1 J . (11.4.9) 

The kinetic friction force is 

! 
k = f , î = !µk N î . (11.4.10) f k x 

In this case, the magnitude of the normal force is not simply the same as the weight of the 
cup. We need to find the y -component of the applied force, 

Fapplied, y = Fapplied sin(!) = (2.0 N)(sin(30o ) = 1.0 N . (11.4.11) 

To find the normal force, we apply Newton’s Second Law in the y -direction, 

Fapplied, y + N ! mg = 0 . (11.4.12) 

Then the normal force is 

N = mg ! Fapplied, y = (0.2 kg)(9.8 m " s!2 ) ! (1.0 N) = 9.6 # 10!1 N . (11.4.13) 

The work done by the kinetic friction force is 

Wfriction = !µk N "x = !(0.1)(9.6 # 10!1 N)(0.5 m) = 4.8 # 10!2 J . (11.4.14) 



or 5.0 "10 !2 J to one significant figure.  Strictly speaking, the result in Equation (11.4.13) 
should be rounded to 0.1N , which would give the same result as Equation (11.4.14) to 
one figure. 

11.4.4 Example: Work done by Gravity Near the Surface of the Earth 

Consider a point-like body of mass m near the surface of the earth falling directly 
towards the center of the earth. The gravitation force between the body and the earth is 
nearly constant, F 

! 
grav = mg ! . Let’s choose a coordinate system with the origin at the 

surface of the earth and the + y -direction pointing away from the center of the earth 
Suppose the body starts from an initial point y0 and falls to a final point y f closer to the 
earth. How much work does the gravitation force do on the body as it falls? 

Answer: The displacement of the body is negative, !y " y f # y0 < 0 . The gravitation 
force is given by 

F 
! 
gravity = mg ! = Fgravity, y ĵ = !mg ĵ . (11.4.15) 

The work done on the body is then 

Wgravity = Fgravity, y !y = "mg!y . (11.4.16) 

For a falling body, the displacement of the body is negative, !y " y f # y0 < 0 ; therefore 
the work done by gravity is positive, 

Wgravity = Fgravity, y !y = "mg!y > 0 . (11.4.17) 

The gravitation force is pointing in the same direction as the displacement of the falling 
object so the work should be positive. 

When an object is rising while under the influence of a gravitation force, 
!y " y f # y0 > 0 . The work done by the gravitation force for a rising body is negative, 

Wgravity = Fgravity , y !y = "mg!y < 0 (11.4.18) 

because the gravitation force is pointing in the opposite direction from that in which the 
object is displaced. 

It’s important to note that the choice of the positive direction as being away from the 
center of the earth (“up”) does not make a difference. If the downward direction were 
chosen positive, the falling body would have a positive displacement and the 



gravitational force as given in Equation (11.4.17) would have a positive downward 
component; the product Fgravity, y !y would still be positive. 

11.5 Work done by Non-Constant Forces 

Consider a body moving in the x -direction under the influence of a non-constant force in 
the x -direction, F 

! 
= Fx î . The body moves from an initial position x0 to a final position 

x f . In order to calculate the work done by a non-constant force, we will divide up the 
displacement of the point of application of the force into a large number N of small 
displacements !x j where the index j marks the j th displacement and takes integer 
values from 1 to N , as in Section 7.3. Let (F , j )ave denote the average value of the x -x 

component of the force in the displacement interval [x j!1, x j ] . For the j th displacement 
interval we calculate the contribution to the work 

!Wj = (Fx, j )ave !x j (11.5.1) 

This contribution is a scalar so we add up these scalar quantities to get the total work 

j=N j=N 

WN = "!Wj = " (Fx, j )ave !x j . (11.5.2) 
j=1 j=1 

The sum in Equation (11.5.2) depends on the number of divisions N and the width of the 
intervals !x j . In order to define a quantity that is independent of the divisions, we take 

the limit as N !" and !x j " 0 for all j . The work is then 

j=N x=x f 

W = lim (F ) #x = F dx (11.5.3) $ x, j ave j % xN !" 
#x j !0 

j=1 x=x0 

This last expression is the definition of the integral of the x -component of the force with 
respect to the parameter x . In Figure 11.5 we graph the x -component of the force as a 
function of the parameter x . The work integral is the area under this curve between 
x = x0 and x = x f . 



Figure 11.5 Graph of x -component of a sample force as a function of the parameter x . 

11.5.1 Example: Work done by the Spring Force 

Connect one end of a spring to a body resting on a smooth (frictionless) table and fix the 
other end of the spring to a wall. Stretch the spring and release the spring-body system.  
How much work does the spring do on the body as a function of the stretched or 
compressed length of the spring? 

Answer: We first begin by choosing a coordinate system with origin at the position of 
the body when the spring is at rest in the equilibrium position. We choose the î unit 
vector to point in the direction the body moves when the spring is being stretched and the 
coordinate x to denote the position of the body with respect to the equilibrium position, 
as in Figure 11.6 (which indicates that in general the position x will be a function of 
time).  The spring force on the body is given by 

F 
! 
= Fx î = !kx ̂i . (11.5.4) 

Figure 11.6 Equilibrium position and position at time t 

In Figure 11.7 we show the graph of the x -component of the spring force as a 
function of x for both positive values of x corresponding to stretching, and negative 
values of x corresponding to compressing of the spring. Note that x0 and x f can be 
positive, zero, or negative. 



Figure 11.7 The x -component of the spring force as a function of x . 

The work done is just the area under the curve for the interval x0 to x f , 
x=x f x=x f 

= F dx = (! )W x kx dx . (11.5.5) " " 
x=x0 x=x0 

This integral is straightforward; the work done by the spring force on the body is 

x = x f 

W = (!kx)dx = ! 
1
k(x f 

2 ! x0
2 ) . (11.5.6) " 2x = x0 

When the absolute value of the final distance is less than the absolute value of the initial 
distance, x f < x0 , the work done by the spring force is positive. This means that if the 

spring is less stretched or compressed in the final state than in the initial state, the work 
done by the spring force is positive. The spring force does positive work on the body 
when the spring goes from a state of ‘greater tension’ to a state of ‘lesser tension’. We 
shall see in Chapter 8 that the positive work done by the spring force decreases the 
potential energy stored in the spring. 

11.6 Work-Kinetic Energy Theorem 

There is a direct connection between the total work done on a point-like object and the 
change in kinetic energy the point-like object undergoes If the total work done on the 
object is non-zero, this implies that an unbalanced force has acted on the object, and the 
object will have undergone acceleration. For an object undergoing one-dimensional 
motion the left hand side of Equation (11.3.16) is the work done on the object by the 
component of the sum of the forces in the direction of displacement , 



final 

Wtotal = ! Fx 
total dx = K f " Ki = #K . (11.6.1) 

initial 

When the total work done on a object is positive, the object will increase its speed, and 
negative work done on a object causes a decrease in speed. When the total work done is 
zero, the object will maintain a constant speed. In fact, the work-energy relationship is 
quite precise; the total work done by the net applied force on a object is identically equal 
to the change in kinetic energy of the object, 

Wtotal = !K = 
2
1 mvf 

2 " 
2
1 mv0

2 . (11.6.2) 

11.6.1 Example: Gravity and the Work-Energy Theorem 

Suppose a ball of mass m = 0.2 kg starts from rest at a height y0 = 15 m above the 
surface of the earth and falls down to a height y f = 5.0 m above the surface of the earth. 
What is the change in the kinetic energy? Find the final velocity using the work-energy 
theorem. 

Answer: 

As only one force acts on the ball, the change in kinetic energy is the work done by 
gravity, 

W = !mg y grav ( f ! y0 ) (11.6.3) 
! !1 -2 1 = ( 2.0 "10 kg)(9.8 m s # )(5 m !15 m) = 2.0 "10 J 

The ball started from rest, vy ,0 = 0 . So the change in kinetic energy is 

1 1 2 1 
!K = mv 2 " mv = mv y , f 

2 . (11.6.4) 
2 y , f 2 y ,0 2 

We can solve Equation (11.6.4) for the final velocity using Equation (11.6.3) 

v y , f = 
2!K 

m 
= 

2W grrav 

m 
= 

2(2.0 " 101 J) 
0.2 kg 

= 1.4 " 101 m # s-1 (11.6.5) 

For the falling ball in a constant gravitation field, the positive work of the gravitation 
force on the body corresponds to an increasing kinetic energy and speed. For a rising 
body in the same field, the kinetic energy and hence the speed decrease since the work 
done is negative. 



11.6.2 Example: Final Kinetic Energy of Moving Cup 

A person pushes a cup of mass 0.2 kg along a horizontal table with a force of magnitude 
2.0 N at an angle of 30o with respect to the horizontal for a distance of 0.5 m as in 
Example 7.4.2. The coefficient of friction between the table and the cup is µk = 0.1. If 
the cup was initially at rest, what is the final kinetic energy of the cup after being pushed 
0.5 m? What is the final speed of the cup? 

Answer: 

The total work done on the cup is the sum of the work done by the pushing force and the 
work done by the friction force, as given in Equations (11.4.9) and (11.4.14), 

Wtotal = Wapplied +Wfriction = (Fapplied, x ! µk N ) ( x f ! x0 ) . (11.6.6) 
= (1.7 N ! 9.6 "10 !2 N)(0.5 m) = 8.0 "10 !1 J 

According to our work-kinetic energy theorem, 

Wtotal = !K = 
1 2 1 mv0

2 . (11.6.7) mv f " 
2 2 

The initial velocity is zero so the change in kinetic energy is just 

!K = 
1 2 1 2 1 mv 2 . (11.6.8) mv " 
2 y , f 2 

mv y ,0 = 
2 y , f 

Thus the work-kinetic energy theorem enables us to solve for the final kinetic energy, 

K f = 
1 mv f 

2 = !K = Wtotal = 8.0 " 10#1 J (11.6.9) 
2 

We can solve for the final speed, 

v y , f = 
2K f 

m 
= 

2Wtotal 

m 
= 

2(8.0 ! 10"1 J) 
0.2 kg 

= 2.9 m # s-1 . (11.6.10) 

11.7 Power Applied by a Constant Force 



! 
Suppose that an applied force Fapplied acts on a body during a time interval !t , and 
displacement of the point of application of the force is in the x -direction by an amount 
!x . The work done, !W , during this interval is 

!W = Fapplied,x !x . (11.7.1) 

where Fapplied, x is the x -component of the applied force. (Equation (11.7.1) is the same 
as Equation (11.4.2).) 

The average power of this applied force is defined to be the rate at which work is 
done, so that 

!W !x 
P = = 

Fapplied,x = Fapplied,xvx ,ave . (11.7.2) ave !t !t 

So the average power delivered to the body is equal to the component of the force in the 
direction of motion times the component of the average velocity of the body. Power is a 
scalar quantity and can be positive, zero, or negative depending on the sign of work. The 
SI units of power are called watts [W] and [1 W] = [1 J ! s-1] . 

Definition: Instantaneous Power 

The instantaneous power at time t is defined to be the limit of the average power 
as the time interval [t,t + !t] approaches zero, 

!W 
= lim 

Fapplied,x !x # !x &
P = lim 

!t"0 !t !t"0 !t applied,x % !t"0 !t ( 
= Fapplied,x vx . (11.7.3) = F lim 

$ '

The instantaneous power of a constant applied force is the product of the component of 
the force in the direction of motion and the instantaneous velocity of the moving object. 

11.7.1 Example: Gravitational Power for a Falling Object 

Suppose a ball of mass m = 0.2 kg starts from rest at a height y0 = 15 m above the 
surface of the earth and falls down to a height y f = 5.0 m above the surface of the earth. 
What is the average power exerted by the gravitation force? What is the instantaneous 
power when the ball is at a height y f = 5.0 m above the surface of the Earth? Make a 
graph of power vs. time. You may ignore the effects of air resistance. 

Answer: 



There are two ways to solve this problem. Both approaches require calculating the time 
interval !t for the ball to fall. Set t0 = 0 for the time the ball was released. We can solve 
for the time interval !t = t f that it takes the ball to fall using the equation for a freely 
falling object that starts from rest, 

y f = y0 ! 
1 gt f 

2 . (11.7.4) 
2 

Thus the time interval for falling is 

t f = 
2 
g 

( y0 ! y f ) = 
2 

9.8 m " s-2 (15 m ! 5 m) = 1.4 s . (11.7.5)


First Approach: 


We can calculate the work done by gravity,


W = !mg y grav ( f ! y0 ) (11.7.6) 
! !1 -2 1 = ( 2.0 "10 kg)(9.8 m s # )(5 m !15 m) = 2.0 "10 J 

Then the average power is 

1!W 2.0 "10 J 1P = = = 1.4 "10 W . (11.7.7) ave !t 1.4 s 

Second Approach: 

We calculate the gravitation force and the average velocity. The gravitation force is 

Fy ,grav = ! !1 kg)(9.8 m s -2 )mg = !(2.0 "10 # = !2.0 N . (11.7.8) 

The average velocity is 

v = 
!y 

= 
5 m "15 m 

= "7.0 m s # -1 . (11.7.9) y ,ave !t 1.4 s 

The average power is therefore 

= F v = (! )Pave y y ,ave mg v y ,ave . (11.7.10) 
= ( 2.0 N)( 7.0 m s ! " -1 ) = 1.4 1! #10 W 



In order to find the instantaneous power at any time, we need to find the instantaneous 
velocity at that time. The ball takes a time t f = 1.4 s to reach the height y f = 5.0 m . The 
velocity at that height is given by 

vy = !gt f = !(9.8 m " s-2 )(1.4 s) = !1.4 # 101 m " s-1 . (11.7.11) 

So the instantaneous power at any time t f = 1.4 s is 

P = F v = (!mg )( !gt ) = mg t 2 y y f f (11.7.12) 
-2 2 1 = (0.2 kg)(9.8 m s " ) (1.4 s) = 2.7 #10 W 

If this problem were done symbolically, the answers given in Equation (11.7.11) and 
Equation (11.7.12) would differ by a factor of two; the answers have been rounded to two 
significant figures. 

The instantaneous power grows linearly with time so the graph of power vs. time is 
shown in Figure 11.13. From the figure, it should be seen that the instantaneous power at 
any time is half of the average power between t = 0 and that time. 

Figure 11.13 Graph of power vs. time. 

7.9.2 Example: Power Pushing a Cup 

A person pushes a cup of mass 0.2 kg along a horizontal table with a force of magnitude 
2.0 N at an angle of 30o with respect to the horizontal for a distance of 0.5 m , as in 
Example 7.4.3. The coefficient of friction between the table and the cup is µk = 0.1. 
What is the average power of the pushing force? What is the average power of the kinetic 
friction force? 



Answer: 

We will use the results from Example 7.8.2 above, but keeping extra significant figures in 
the intermediate calculations.  The work done by the pushing force is 

Wapplied = Fapplied, x (x f ! x0 ) = (1.732 N)(0.50 m) = 8.660 "10 !1 J . (11.7.13) 

The final speed of the cup is vx, f = 2.860 m s ! -1 . Assuming constant acceleration, the 
time during which the cup was pushed is 

= 
2(x f ! x0 )= 0 3496s (11.7.14) . .t f vx, f 

The average power of the pushing force is then, with !t = t f , 

"Wapplied 8.660 #10 !1 J 
= 2.340 W , (11.7.15) =(Papplied )ave = 

"t 0.3496 s 

or 2 3W to two significant figures. . 

The work done by the friction force is 

W = fk (x f ! x )friction 0 
(11.7.16) 

µ N x ! x ) = !( "10 !2 ) = ! 4.8 "10 !2 J).= ! ( 9.6 N (0.50 m) (k f 0 

The average power of kinetic friction is 

(P ) = 
"Wfriction !4.8 #10 !2 J 

# !1 (11.7.17) = = !1.373 10 Wfriction ave "t 0.3496 s 

or !1.4 "10 !1 W to two significant figures. 

Time Rate of Change of Kinetic Energy and Power 

The time rate of change of the kinetic energy for a body of mass m moving in the x -
direction is 

dK 
= 
d ! 1 2 " dv x v = ma v . (11.7.18) x x xdt dt %
# 2 
mv x $

& 
= m 

dt 



By Newton’s Second Law, Fx = ma x , and so Equation (11.7.18) becomes 

dK 
= F v = P . (11.7.19) 

dt x x 

the instantaneous power delivered to the body is equal to the time rate of change of the 
kinetic energy of the body. 
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