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8.022 Lecture Notes Class 13 - 09/28/2006


Find work needed


to bind together
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Do sides , then diagonals 
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Charge Up a Capacitor


dW = (C
q )dq work gets harder as there is more charge already on it � Q qW = 0 C dq 
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C = V
Q


= 2
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⎧ ⎨�2V = −�
ρ 
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Poisson’s ⎩�2V = 0 Laplace 

In one dimension: d2V = 0 , so V = mx + b (line).dx2 

First Uniqueness Theorem 

Given V on boundary S of volume V , Laplace’s equation gives a 

unique solution for V in V . ( V does not need to be finite ) 

. 

�2V1 = 0 = �2V2 

V3 = V1 − V2 

So �2V3 = 0, and V3 = 0 on boundary 

Also no local min/max , so V3 = 0 in V. 

Thus V1 = V2 
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Second Uniqueness Theorem 

In a volume surrounded by conductors, the total charge on each 

conductor determines the E-field uniquely. 

Will charges spread out ? 

Yes! 

Thus case below 

no charges - (total on each) stable


solution


Still no charge on each conductor,


so by Second Uniqueness Theorem,


same solution as above



