Electricity and Magnetism

- Today
 - RC Circuit Demos
 - Electric Breakdown Experiment
 - Ionization

• First: Charging the capacitor

Mar 22 2002

Mar 22 2002

• But

- $\ \tau_{charge} \ = 100 k\Omega \ x \ 100 \mu F = 10 s$
- $\ \tau_{discharge} = 0.1\Omega \ x \ 100 \mu F \ = 10 \mu s$

Mar 22 2002

- Power?
 - Power = $\Delta U/\Delta t$ -> SLOPE!

In-Class Demo

Variable time constant $\tau = RC$

In-Class Demo

- Changes in R or C change τ
- Large τ smoothes out signals
- Sharp edges/rapid changes get removed
 - high frequencies are suppressed
- RC circuits are <u>low-pass filters</u>

Experiment EB

- Electrical Breakdown
 - You have seen many examples
 - Lightning!
 - Sparks (e.g. Faraday Cage Demo!)
 - Fluorescent tubes
 - Study in more detail
 - Reminder: Ionization

Ionization

- Electrons and nucleus bound together
- Electrons stuck in potential well of nucleus
- Need energy <u>AU</u> to jump out of well
- How to provide this energy?

- Define $V_{ion} = \Delta U/q$
- Ionization potential
- One e- in, two e- out
- Avalanche?

- To get avalanche we need:
 - ΔU_{kin} between collisions (1) and (2) > V_{ion} * e
- Acceleration in uniform Field

$$\Delta U_{kin} = V_2 - V_1 = e E d_{12}$$

Avalanche condition then

$$E > V_{ion} / \lambda_{mfp}$$

How big is Mean Free Path?

(i) If Density n is big -> λ_{mfp} small

(ii) If size σ of molecules is big -> λ_{mfp} small

Effective cross-section

$$\lambda_{mfp} = 1/(n \sigma)$$

Avalanche condition $E > V_{ion} / \lambda_{mfp} = V_{ion} n \sigma$

Experiment EB: Relate Ε, V_{ion}, σ

Example: Air

 $n \sim 6x10^{23}/22.4 \ 10^{-3} \ m^3 = 3 \ x \ 10^{25} \ m^{-3}$

 $\sigma \sim \pi r^2 \sim 3 \times (10^{-10} \text{m})^2 = 3 \times 10^{-20} \text{ m}^2$

 $V_{ion} \sim 10 \text{ V}$

Need E > 3 x 10^{25} m⁻³ x 3 x 10^{-20} m² x 10 V ~ 10^{7} V/m

For $V \sim 800 \ V$: $V = E \ d \rightarrow d = 800/10^7 \ m \sim 0.1 \ mm$

Experiment EB

