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Notes for Lecture #1: Periodic Phenomena
 

The lecture begins by introducing the concept of periodic or oscillatory motion and demonstrating 

a wide variety of examples, including the quite complex motion of the Euler’s disk (Note that the 

German language name Euler is pronounced “Oiler”). Frank Wilczek, mentioned in this section, is 

an MIT Nobel Prize winning physicist. This section ends with a demonstration of different sound 

frequencies. The unit of frequency is the hertz (Hz) and 1 Hz is one vibration per second. You 

should be able to hear many of the frequencies demonstrated: but it is not clear when Dr. Lewin 

really turned off the tone generator! The term “simple harmonic oscillation” (SHO) is introduced 

and the SHO equation of motion x = x0 cos(ωt + φ) is shown (15:00). As an aside, the comment 

about “8.01” refers to an introductory mechanics course at MIT. The term x0 is the amplitude, 

the largest value of the displacement. The argument of a trigonometric function is an angle, which 

we measure in radians. Thus the product ωt is an angle, with ω (omega) the angular frequency, 

measured in radians/s (different from Hz; there are 360◦=2π radians in one turn, so ω is 2π times 

the frequency in Hz). Replacing ωt by ω(t + T ) gives back the same value if T = 2π/ω, so T is the 

period of oscillation. f = 1/T is the frequency in Hz. The concept of projection of circular motion 

onto an axis to give SHO along that axis is discussed. The angular velocity is unfortunately also 

called ω. φ (called the phase angle) is the angle at time t=0. 

A spring (18:15) with spring constant k attached to a mass m obeys Hooke’s law Fx = −kx 

giving ma = mẍ = −kx , which is a differential equation. If rewritten as ẍ + k x = 0 , the SHO 
m 

equation x = x0 cos(ωt + φ) is a solution to this equation, provided that ω2 = k . This means  m 
k mω =
m , or T = 2π

k . Note that this frequency does not depend on the amplitude of the 

motion (x0). The same equation is found for a mass hanging on a vertical spring, in which case 

the equilibrium position has the spring stretched. The validity of the SHO equation for a mass on 

a vertical spring is verified in the demo, by comparing directly to a projection of circular motion 

(24:20). Without determining the value of k, the behavior of the frequency with a change in mass 

is explored (25:45). It is actually pretty easy to determine k for a spring using Hooke’s Law, and  
therefore that the equation w = k/m does work, but this is not done in the video. Look at 

this equation intuitively: in the period form, it says that a long period arises from a large mass 

or from a weak spring. Think about why this makes sense. In the actual demo done (26:20), pay 

attention to the use of errors, and the use of multiple oscillations to increase the timing accuracy. 

The fact that results are obtained which do NOT agree with initial expectations (32:15) are a 



 

 

good demonstration of the scientific method, and improvement of an initially inadequate theory. 
M
3Accounting for the mass of the spring1 (34:45), a more accurate formula is T = 2π 

m+ 
k where 

the inclusion of the mass of the spring (M) corrects the initially observed deviation. 

Complex notation can be very useful in discussing pe­
√ 

riodic motion (39:15). Defining j = −1 , a set of 

Cartesian axes can be laid out, labeled as Re and Im 

(Real and Imaginary, the equivalents of x and y co­

ordinates, respectively) with the y coordinate being 

multiplied by j. It easily follows that a complex num­

ber on a unit circle (41:15) is z = cos(θ) + j sin(θ). 

The Euler formula cos(θ) + j sin(θ) = ejθ is given without proof (41:50), although it is mentioned 

that a Taylor’s expansion is the tool needed. This result dates from 1748! It means that complex 

exponents correspond to moving through an angle on the complex unit circle. The periodicity of 

this function is discussed. For a general point in the complex plane, z = Aejθ. The SHO equation 

can be written with the real part of Aej(ωt+φ). Clearly, j = ej(π/2±2πn) (where n is any integer) 

from the geometry and periodicity. Before the break, an example of an oscillation caused by heat 

is shown (49:15). 

For a pendulum, T = 2π 
g
l (51:00), so a long pendulum should have a longer period. This is 

again in line with intuition, and readily demonstrated (52:15). The small angle approximation 

is discussed, meaning that in radians, sin(θ) ≈ θ. Another approximation, that the string is of 

negligible mass, is in fact very accurate (55:20). It’s very difficult to make a spring strong but 

very light, so you typically need to correct for the mass, but it is easier to make a very light, strong 

string. Since g is known, and l easy to measure, it is easy to compare periods of pendulums to 

what is predicted. Data testing the small angle approximation sin(θ) ≈ θ is shown (56:15) with 

careful attention to experimental errors. A clip from the Physics 8.01 lectures is included (58:20), 

but don’t try this at home! Since mass is not in the formula, we do not expect any dependence on 

mass, and this is well demonstrated by adding Prof. Lewin’s mass to a pendulum. 

The case of the physical pendulum, in which the mass is not necessarily concentrated at one point, 

is next considered, using angular motion equations (1:01:00). The angular motion analogue of 
FF = mFa is Fτ = IFα, with Fτ the torque, I the moment of inertia, and αF the angular acceleration. 

Note that the angular acceleration and torque are vectors (much like FF and Fa in Newton’s law), 

and are perpendicular to the plane in which the force is applied. The torque is Fτ = Fr×FF (1:04:00), 

1Pages in “French”, mentioned from time to time in the lectures, refer to pages in the textbook used at that 

time for 8.03: A.P. French Vibrations and Waves (1971) ISBN: 9780393099362. 
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where the × denotes not ordinary multiplication, but rather the vector cross product. 
The choice of origin is important in angular motion problems, and in this 

case a clever choice is made to get rid of the torque from the force that must 

be present at the point of suspension. By defining this as the origin, Fr to 

that point is zero, and there is no torque due to the suspension force! For 

the force applied a distance b from this origin, which is the mg of the centre 

of mass, the magnitude of the cross product is bmg sin(θ), and this is, from 

the angular equivalent of Newton’s law, IFα. 

Taking into account the direction of the torque, and that αF is the second time derivative of the 
¨ angle θ (actually also a vector, a detail we will ignore), we get −bmg sin θ = IP θ (1:06:20), and 

bmgθ ¨ in the small angle approximation sin(θ) ≈ θ, we get the differential equation θ + = 0 
IP 

(1:07:00). This is SHO with solution θ = θ0 cos(ωt + φ). Note the discussion of angular frequency 

versus angular velocity, which unfortunately have the same symbol ω. We get T = 2π IP /bmg, 

which is tested for a hoop of mass m and radius R. Nobody in the audience seems to recall 

how to calculate the moment of inertia (1:12:00); it is mR2 if about the center. By the parallel 

axis theorem, for a point on the outer edge of the hoop, IP = mR2 + mR2 = 2mR2, and then o o 
2mR2 2R 

T = 2π 
Rmg 

= 2π 
g 
. Note that, as with a simple pendulum, m does not appear (1:13:30). 

This is the same as the period of a pendulum with all the mass at the bottom of the hoop. The 

formula is tested and works to (just) within experimental error. 
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