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Notes for Lecture #2: Damped Free Oscillations 

The lecture starts by adding oscillations using the trigonometric identity:     
α+β α−β cos α + cos β = 2 cos
2

cos
2

. With x1 = A cos ω1t and x2 = A cos ω2t, you find: ; X ; X 
ω1 + ω2 ω1 − ω2 

x1 + x2 = 2A cos t cos t The second term is a 
2 2 

“slow” one, varying at the difference of the frequencies, while the 

first is the “fast” one at their average, which is close to the original 

frequencies if they are close in value. The slow term modulates the 

amplitude of the fast one and produces beats. The frequency of the 

beats is Δf , the difference between the two frequencies. It is not 1
2 Δf because the sound is loud 

when the “slow” wave is large whether it is positive or negative. If the two oscillations do not have 

the same amplitude, then the beats do not give complete cancellation, as demonstrated (6:00). 

Damping of oscillations can be caused by a friction or drag force. The main terms of the friction 

force due to air drag are FFfr = −C1Fv − C2v
2v̂, respectively the viscous and pressure terms (13:30). 

Here we will consider only the viscous term appropriate to low speeds, and unless you are interested, 

you do not need to explore the general case further. As a first example, a horizontal spring with 

viscous drag is considered(16:00). Changing notation of C1 to b, we find the equation of motion 

mẍ = −kx − bẋ. Defining k/m = ω2 and b/m = γ, this can be written as: ẍ + γẋ + ω2 = 0.0 0x 

We want to find the frequency of the actual oscillation ω, which intuition tells us should be lower 

(longer period) than for completely free oscillation. 

This problem can be solved using complex numbers (21:00). In the complex plane, z̈+γż+ω0
2z = 0 

and a solution is sought in the form z = Aej(pt+α). Plugging into the differential equation gives 

(−p2 + jγp + ω0
2)z = 0. Independently, the real and imaginary parts must be 0. The parameter 

p must itself be complex for this to happen in a reasonable way. Put p = n + js (25:00), with n 

and s real. We need p2 and this can be calculated as any binomial term, recalling that j2 = −1: 
2 2 − s 2p = n 2 + 2jns. Substituting gives (−n + s2 − 2njs + jγn − γs + ω0

2)z = 0. Since z is not 

zero, the part in brackets must be zero, and both in its real and imaginary parts. The imaginary 

part is −2njs + jγn = 0 which means that (27:30): γ/2 = s. We can plug in this value for 
γ2 γ2 γ2 

s, in which case the real part is −n 2 + − + ω0
2 = 0, giving n 2 = ω0

2 − . At this point 
4 2 4 

Aej(nt + jst + α) j(nt + α)(28:40) p is fully determined, and z = Aej(pt + α) = = Ae−ste

Ae−γt/2 so z = ej(nt + α) (29:50). The first term is an exponential decrease which multiplies 



the second, which is an oscillatory term. Since n is a frequency, we replace it with ω, with 

ω2 2= n = ω0
2 − γ2/4, less than ω0

2 as expected. 

An error in the real part (should remove the complex exponential) is made initially. The correct 

formula for the real part is x = Ae−γt/2 cos(ωt + α) (33:30). Another 

correction is that T = 2π/ω (35:50).The period T does not change 

with time, only the amplitude changes. We now introduce the qual­

ity factor Q = ω0/γ(36:45), and rewrite ω2 = ω0
2 − 

1 
. One use of 

4Q2 

Q is to study how the amplitude decays as a function of number of 

oscillations, N(39:00), giving A(N) = Ae−Nπ/Q, meaning that Q/π 

is the number of oscillations one has to wait for the amplitude to 

decrease by a factor of e (recall e ≈ 2.7). 

A demo uses a Styrofoam ball (42:00) decaying from 27 cm amplitude to 10 cm amplitude (factor 

e). In this case Q is about 35, with a decrease in amplitude by a factor e after about 10 oscillations. 

Consider an “RLC” circuit (48:00), one which has a resistor, R, 

capacitor, C, and inductor, L, along with a switch and battery (Note 

that “8.02” is the MIT Electricity and Magnetism course). The 

resistor “resists” the flow of electricity, a capacitor “stores” electric 

charge, and an inductor “stores” magnetic field, which arises from 

current flowing in the inductor. Recalling the energy approach to 

oscillation, we could expect that the C acts like potential energy, 

while the L, reflecting flow, acts like kinetic energy. It is by exchange 

between these two forms that oscillation can take place. In turn, R acts like damping. 

Analysis proceeds by looking at the electrical current flowing in the circuit (49:00). The current 

in a circuit is due to the flow of electric charge and is denoted I. Charge itself is denoted q. At any 
dq

point in the circuit, the rate of flow of charge is the current, so I = . The analysis follows the  dt 

standard E&M procedure for such circuits using Faraday’s Law, EF · dFl = − 
dφ 

, where the circle 
dt 

through the integral sign means that the integral is not evaluated between two limits, but rather 

following a path in space. Here, that path is our circuit. The circuit has a magnetic field through 

its area, and the total of magnetic field times area (this is in fact an integral too) is called the 

magnetic flux. Faraday’s law says that if the flux inside a path (in this case our circuit) changes, 

then its rate of change will cause an electric field to build up around the perimeter.  
The quantity EF · dFl across a circuit element equals the voltage across it. In a capacitor, if 

there is charge on each plate of q (positive on one plate, negative on the other), then there is a 
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voltage across the capacitor of VC = q/C, where C is the capacitance (50:50). Across a resistor, 

the voltage drops by the product IR (this is known as Ohm’s Law). Summing the voltages to 

determine EF · dFl is analogous to “Kirchhoff’s Law”, which is mentioned disparagingly. The flux 

is contained inside the inductor, and is given by φ = LI, where L is the value of the inductance. 

−LdISo, the right side of the equation is −dφ = − d (LI) = . Doing the sum of the voltages, we 
dt dt dt 

= −dφ dqget +IR +0+ VC − V0 = − d (LI) = −LdI (51:45). With I = , this can all be brought to 
dt dt dt dt 

+ Rdq q = Ld2q + Rdq qan equation in q: LdI + + = V0. Dividing by L and going back to the ‘dot’ 
dt dt C dt dt C 

notation for derivatives we get q̈ +
 R 
L q̇ +
 q V

LC L 
0 .
 If we put R/L = γ and 1/LC
 = ω0

2, this starts =
 

to look very familiar (52:45): q̈ + γq̇ + ω0
2q = V0/L which is almost identical to that for a spring 

with damping, as discussed earlier in this lecture. The resistance plays the role of the damping 

(heat is dissipated in the resistor) and the natural frequency is determined by the capacitance and 

inductance, not surprising since the oscillation is due to transfer of energy between them. 

The difference is that, unlike in the case of the spring, the right hand side is not zero (54:00). For 

the spring, the oscillation in position eventually damps down to zero. However, for the capacitor, 

the oscillation in the charge does not damp down to zero. Looking at the differential equation 

for charge after a long time (when the derivatives will be damped down to a very small value) 

gives qfinal = V0C. So, the solution in this case can be found by adding this end result to the 

previous solution. So, q = q1e−γt/2 cos(ωt + α) + qmax (55:30). This is a decaying oscillation 

which ends up at q = qmax. The parameters q1 and α must be determined from initial conditions. 

Assuming the circuit starts with no charge on the capacitor and no current flowing(56:30), you 

get q1 = −qmax/ cos α and tan α = −γ/2ω. For high-Q systems (which many RLC circuits are), 

ω ≈ ω0 and so (59:00) q1 ≈ −qmax and the resulting time dependence is very similar to that shown 

for a damped mass on a spring (see top figure on Page 2) except that the charge decays to qmax 

while the position of the mass decays to zero (1:00:00). A demo follows, driving an RLC circuit 

with a square wave (1:06:00) so many instances of the oscillation can be seen. 

What if γ2/4 > ω2? Then ω2 = ω2 − γ2/4 (1:08:30) or equivalently, n2 = ω2 − γ2/4, is negative 0 0 0  1/2 
and so n = j γ2 − ω0

2 Putting this back into z = Aej(pt+α) where p = n + js gives (for x being 
4     X
1 X
1 

2

− ω0
2 t
−


γ
 
2
 
+
 

;
 ;

γ2 γ22

− ω0
2 t
 

γ
 − −
 
4 2
 4
 

the real part of z: x = A1e + A2e (1:11:30) which 

is a pure exponential decay, corresponding to overdamping (the oscillatory case discussed above is 

called underdamped). Again, the constants (A1 and A2) are determined by initial conditions. 

−γt/2A final case (1:14:30) is ω0 = γ/2, called critical damping. The solution is x = (A + Bt)e , 

again a decay. A damped torsional pendulum demo (1:16:00) ends the lecture. 
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