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Notes for Lecture #11: Fourier Analysis
 

This lecture introduces Fourier analysis. It turns out that the previous discussion of representing an 

arbitrary vibration in terms of a superposition of normal modes is equivalent to Fourier analysis. 

This will be particularly useful in dealing with arbitrary initial conditions. In representing the  ∞motion as a superposition of normal modes we have y(x, t) = sin(knx) cos(ωnt) with n=1 Bn 

kn = nπ/L and ωn = vkn (2:10). The initial condition corresponds to t = 0 and that function  i  πx 2πx 
is y(x, 0) = B1 sin + B2 sin + B3.... Fourier analysis can show us what values of 

L L 
Bn correspond to a specific initial condition, but first we need some general considerations about 

Fourier series. For any single-valued regular function, a series can be formed (4:45): 
∞ ∞0 0A0

f(x) = + Am cos(mx) + Bm sin(mx). 
2 

m=1 m=1 

We want to find the values for the Am and Bm given the function defining the initial conditions 

at all points. The procedure will involve taking various integrals. We first just integrate the 

function f(x) itself from −π to π. Since sin(mπ) = sin(−mπ) = 0 and cos(mπ) = cos(−mπ), the 

integrals from −π to +π of the second and third terms in the representation of f(x) will be zero  π  π
and therefore: f(x)dx = A0 dx = 2π A0 = πA0. We can thus write (6:35)−π −π 2 2
  π
1 

A0 = f(x)dx . 
π −π  π 

To get the other A values, consider the integral f(x) cos(nx)dx, with n a positive integer.  π  π 
−π 

A0 A0
The first part gives cos(nx)dx = cos(nx)dx, which is, for exactly the reason just 

2 2−π −π π 

explained, 0. The third part gives cos(nx) sin(mx)dx. This is 0 because cos nx sin mx is 
−π 

an odd function for any value of n or m (recall both are positive integers). So integration 

over any symmetric range in x must give 0. That leaves us with the second part, which has π 

cos(nx) cos(mx)dx. It may not be obvious, but if m  = n, this is also 0, as can be shown 
−π  π 

using integration of complex exponentials. However, if m = n, we have cos 2(nx)dx. Again, 

 π  π 

−π 
you do this integral with complex exponentials or trig identities and the answer is simply π. Thus

f(x) cos(nx)dx = Am cos(mx) cos(nx)dx = πAm, or (9:40) 
−π −π
 

1 
 π
 

Am = f(x) cos(mx)dx . 
π −π 



By a very similar procedure, we find that:
  π1 
Bm = f(x) sin(mx)dx. 

π −π  π  π  π1 1 1 
The equations A0 = f(x)dx, Am = f(x) cos(mx)dx, and Bm = f(x) sin(mx)dx 

π π π−π −π −π 
make up the recipe for Fourier analysis. In fact, if we let m start at 0, we can forget the first 

of these since cos(0) = 1 (12:30). A very simple example of a plucked string is to lift it up to a 

value a over its whole length from 0 to L. Since this is not periodic, we imagine that, in fact, the 

function extends from 0 to 2L and is of value −a between x = L and x = 2L. The period is 2L 

and the average value (and thus A0) is 0. In the equations above, the variable x was in radians 

and we want in now to be in meters. We do the conversion using the fact that the wavelength is 

2L (and so x = 2L is 2π radians) and the modified formulas are (18:30): 

∞   ∞   0 0A0 mxπ mxπ 
y(x) = f(x) = + Am cos + Bm sin

2 L L
m=1 m=1 

which lead to the modified recipes:  2L    2L   1 mxπ 1 mxπ 
Am = f(x) cos dx Bm = f(x) sin dx. 

L L L L0 0 

It is immediately clear that the cos terms cannot represent the square-wave function well, since 

cos is even, while the function is odd (25:30). All the A values must be zero! The sin terms 

can represent the function well, or at least the first one does so. However the second term (B2) 

contributes in the wrong places, as do all even Bn (28:45). These must also be zero! 

The integral can be split and done separately in the two intervals where the function changes sign,  L    2L   a mxπ a mxπ  
= sin dx− sin dx. Using sin(αx)dx = −( 1 ) cos αx with α = mπ ,Bm 

L L L L α L  b 
0 L        L mxπ  b a L mxπ  L a L mxπ  2L 

sin(mxπ/L)dx = − cos  . So Bm = − cos  + cos  
a mπ L a Lmπ L 0 Lmπ L L  L 

(31:55). If m is odd, then cos(mxπ/L) = cos(mπL/L) − cos 0 = −1 − 1 = −2. Similarly  0  2L 
cos(mxπ/L) = cos(mπ2L/L)−cos(mπL/L) = 1−(−1) = 2. For odd values of m, the final result 

L 
a L a L 4a 

is Bm = − (−2) + 2 = . However, if m is even, then the cos terms, and therefore 
Lmπ Lmπ mπ         4a πx 1 3πx 1 5πx 

the Bms, are zero. The final result is y(x, 0) = sin + sin + sin + ...
π L 3 L 5 L

(36:50). 
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A drawing of the first two terms makes a good start at 

reproducing the function, with B1 ≈ 1.27a, B3 ≈ 0.42a, 

etc. The terms can be added electronically and displayed 

on an oscilloscope making a convincing demo of generating 

a square wave with sine waves (42:40). 

Having a full description of the initial shape of the string at t = 0 as a summation of normal 

modes, we can now investigate its time development by including the time dependence of each  
normal mode (45:00). This gives (with ωm = vkm, km = mπ/L, and v = T/µ) � � � � � �  4a πx 1 3πx 1 5πx 

y(x, t) = sin cos(ω1t) + sin cos(ω3t) + sin cos(ω5t) + ... . 
π L 3 L 5 L 

The behavior of the time development is not what one might at first expect. If a triangular 

pulse is released, pulses of half the initial amplitude travel out in both directions. There is a very 

non-trivial equivalence between thinking of independent normal modes, each oscillating at their 

individual frequencies, and these two oppositely-directed traveling waves. Demos (50:00) for a 

variety of initial shapes dramatically show this equivalence, including both the two traveling waves 

as well as all of the oscillating harmonics (both their amplitudes and detailed time dependences). 

The discussion now moves to the energy content of a signal (1:00:00) We can consider the energy in 

a signal made up of propagating waves and if we take A2 + B2 for each mode, we would get a power 

spectrum showing how much energy is present at each frequency. The Fast Fourier Transform 

(FFT) can do this spectral analysis with a digitized real-time signal on a computer. Several 

examples are shown, including relatively pure tones, tones with one or two higher harmonics, and 

more complicated sounds. 

If enough data is available, the FFT can extract power information even from a noisy signal such 

as that of X-rays from a pulsar (1:11:00). In this case one sees a huge spike in the power spectrum 

at 401 Hz due to the rotation of an object of about the mass of the Sun (a neutron star). The 

FFT is a powerful and universally used technique in signal analysis. 
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