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Problem 5.1 (French 6-12)1 – Plucked string

A sketch of the string is shown.

a) Remember that the kinetic energy density of a wave

dK
y(x, t) in a string is

dx
=

1

2
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(
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2

∂t

)
, and the potential

dU
energy density is

dx
=
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2
T

(
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)
. Here µ is the mass

density and T is the tension in the string.
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Then, the total energy of the string at t = 0 is

E = K + U = U (K = 0 at t = 0) =
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Since energy is conserved (we ignore any form of damping) the energy at t = 0 is the same as the

energy at later times.

Alternatively, we can calculate the potential energy of the

string directly. The potential energy can be calculated by find-

ing the amount by which the string, when deformed, is longer

that when it is straight. This extension, multiplied by the as-

sumed constant tension T , is the work done by us creating the

deformation. A displaced infinitesimal segment of a string is x x+dx

dx

ds dy

shown in the figure.

Thus, for the segment, we have dU = T (ds− dx), where ds =
√√ dx2 + dy2

= dx 1 +

(
∂y

erse
∂

)2

. If we assume that the transv displacements are small, so that ∂y/∂x
x

� 1,

we can approximate the above expression using the binomial expansion to two terms:
1

ds− dx ≈
2

(
∂y

2

∂x

)
dx. Therefore,

1
dU ≈

2
T

(
∂y

∂x

)2

dx ⇒ dU

dx
=

1

2
T

(
∂y

2

∂x

)
.

b) From our choice of coordinates, the shape of the string and that of all subsequent oscillations

are odd functions. Hence, we can apply a Fourier transform to decompose the motion of the wave

into sine functions only. They will have the form yn(x, t) = An sinωnt, where An is the amplitude of

1The notation “French” indicates where this problem is located in one of the textbooks used for 8.03 in 2004:

French, A. P. Vibrations and Waves. The M.I.T. Introductory Physics Series. Cambridge, MA: Massachusetts

Institute of Technology, 1971. ISBN-10: 0393099369; ISBN-13: 9780393099362.



the n-th harmonic, ωn = nω1 and ω1 is the angular frequency of the first harmonic (fundamental).

The initial shape of the string repeats at an angular frequency of ω1 because all harmonics repeat

at an integer multiple of the first harmonic.

We can compute ω1 from the relation ωn = knv. We know that the first√ harmonic has a wavelength

λ1 = 2L. Hence, k1 = 2π/λ1 = π/L. Therefore, ω1 = πv/L = π/L√ T/µ. Then, the initial pulse

shape repeats every 2L µ/T seconds. Notice that this is the travel time of a pulse from one end

of the string to the other, and back.

Problem 5.2 – Fourier analysis

a) The function is
h

y( ) =

{
2

x L
x if 0 ≤ x < L/2

−2hx+ 2h if L/2
L

≤ x ≤ L,

and a sketch of y(x) is shown. L x

y
h

0∑∞
The most generic Fourier expansion is y(x) = An cos(knx) + Bn sin(knx). Since f(0) = 0, all

n=0
∞

cosine terms will vanish. Furthermore, y(L) = 0
∑

Bn sin(knL) = 0. Since, in general, Bn

n=0

6= 0

nπ
then, sin(knL) = 0 ⇒ knL = nπ kn = .

L
∞

Hence, the Fourier expansion of y(x) is y(x) =
∑

Bn sin
n=1

(nπ
x . Notice that the sum starts at

L

n = 1. The n = 0 term equals zero so it does not contribute.

)
We can find the value of Bn by

multiplying both∫sides by sin(mπx/L) and integrating with respect to x:
L

sin
0

(mπ
L
x
)
y(x) dx =

∫ L

0

sin
(mπ
L
x
) ∞∑
n=1

Bn sin
(nπ

x
L

)
dx∫ L
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0

(mπ
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)
y(x) dx =

∞∑
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Bn

∫ L

0
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)
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dx.

W∫ e recall the orthogonality property of the sine function,
L
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(mπ
L
x
)

sin
(nπ
L
x
)
dx =

{
0 if m 6= n
L
2

if m = n.
Hence,

∫ L
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x
)
y(x) dx = Bm

L
.
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The Fourier coefficients then are

2
Bn =

L

∫ L
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sin
(nπ
L
x
)
y(x) dx =
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[∫ L/2
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sin
(nπ
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) 2h

L
x dx+

∫ L

L/2

sin
(nπ
L
x
)(
−2h

x+ 2h
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]

4h
=

nπ
2

n2π2

 sin
(

2

)
− sin(nπ)︸ ︷︷ ︸

=0

 =
8h

n2π2
sin
(nπ

.
2

)
A few values of Bn are B1 = 8h

π2 B3 = − 8h
9π2 B5 = 8h all

25 2 . Note that Bn is zero for even n and
π

that the sign of Bn alternates for odd n. We could have predicted that. Why?
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∑∞ 8h
The Fourier expansion of y(x) then is y(x) =

n=1

nπ
sin

n2π2

( nπ
sin

2

) (
x . A graph of y(x) for

L

values x < 0 and x > L and n = 1

)
→ 999 is shown in the figure below.

Note that the spatial period of this function is 2L

and the mean value over this period is zero. Al-

ternatively, we could have shifted the function so

that the peak was at x = 0 and expanded in terms

of cosines over a spatial period of 2L. All func-

tions would then be even. Since all we are doing

is shifting the function by L/2, we expect that the

Fourier coefficients of the sine expansion, Bn, are

equal in magnitude to the Fourier coefficien

=1

( ts An
∞

nπ
in the cosine expansion y(x) =

∑
An cos

n
L
x
)
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It easy to see why the magnitudes of the coef-

ficients of the cosine and sine series must equal.

Consider the graphs of the first harmonic for each

series. It is then clear that A1 = B1. The case for

the third harmonics is similar. Remember that

B3 < 0. Then, A3 = −B3. We thus have A1 =

B1 A3 = −B3 A5 = B5 A7 = −B7 . . . Al-

ternatively, we could have computed the Fourier

expansion where the spatial wavelength is L. In

that case, the decomposition of the function (peak

at x = 0)

y(x) =

{
2h
L
x+ h if −L/2 ≤ x < 0

−2hx+ h if 0
L

≤ x ≤ L/2,

would have the form
∞

y(x) =
∑

Cn cos
n=0

(
2nπ

L
x

)
.

0  L/2 L

y=B1sin( x/L)

L/2 0   L/2

y=A1cos( x/L)

0  L/2 L
B3

0 

B3
y=B3sin(3 x/L)

L/2 0   L/2
A3

0 

A3
y=A3cos(3 x/L)

Convince yourself that sine terms are not allowed

in this particular (even) Fourier decomposition.

The Fourier expansion, in this case, would be

h
y(x) =

2
+

∞∑
n=1

2h

n2π2
(1− cosnπ) cos

(
2nπ

x
L

)
.

Note that the constant term h/2 is the average

value of y(x) over one spatial period. This con-

stant comes from the n = 0 term.

The graph of this Fourier expansion is shown to

the right. This expansion now is even, has a non-

zero mean average (h/2) and a spatial period L.
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Since this Fourier decomposition gives the shape of the original function in the interval [−L/2, L/2],

it is a correct mathematical solution. In part (c), however, we will see that this decomposition is

not physically correct if we let the string evolve in time.

b) We know how sinusoids evolve in time. For example, the sinusoid y(x) = A sin(kx) evolves as

y(x, t) = A sin(kx) cos(ωt + φt), where ω is the frequency of oscillations given by the dispersion

relation and φt is the temporal phase of the oscillations. The initial condition y(x, 0) = y(x) requires

φt = 0. Each Fourier comp√ onent of the string shape Bn sin(knx) will evolve as Bn sin(knx) cos(ωnt),

where ωn = knv = nπ T/µ/L. The string shape then evolves as
∞

y(x, t) =
∑ 8h

n=1
n2π2

sin
(nπ

2

)
sin
(nπ
L
x
)

cos
(nπ

vt
L

)
.

where v =
√
T/µ is the speed of propagation. Could we also have said that the shape of the string

evolves as y(x, t) =
h ∑∞ 2h

+
2

n=1
n2π2

(1− cosnπ) cos

(
2nπ

L
x

)
cos

(
2nπ

vt
L

)
?

The answer is NO! Try it, you will notice

that at t = T1/4 the entire string is at po-

sition h/2 (the ends are no longer fixed).

Shown are the superpositions of the Fourier

standing waves for t = T1/8, T1/4 and T1/2

(n = 1→ 999).

t=T1/8

t=T1/4

t=T1/2

c) There is an alternative way of thinking about the

time evolution. The moment you release the string,

one triangle (height h/2) will travel to the right and the

other to the left. The boundary condition y(±L, t) = 0

must hold at all times.

The graph shows the traveling

waves and their sum at t = T/8.

Recall that fixed string ends im-

ply a reflection coefficient of −1.

Hence, incident waves flip at the

ends of the string. Initially, Wave

1 travels to the left and Wave 2

travels to the right. Notice that L/2 0   L/2
1

0.5
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1

y(x,T/8) vs. x

x

y(
x,

T/
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Wave 1
Wave 2
Resultant

999/2 evolving standing waves and the 2 traveling waves give results that are indistinguishable.

Problem 5.3 Fourier series ∞

The most generic Fourier expansion is y(x) =
∑

An cos (knx+ φn) . The functions in this problem
n=0

have the boundary conditions y(0, t) = y(L, t) = 0, which imply φn = π/2 and kn = πn/L. Hence,
∞

y(x) =
∑

An sin
n=1

(nπ
x

L

)
.
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Note that the sum now starts from n = 0 rather than n = 1. The n = 0 term equals zero so it does

not contribute to the sum. The Fourier coefficients, An, can be found by multiplying the latter

expression∫ by sin (kmx) and
L

sin (kmx) y(x) dx =
0

∫integrating:
L ∞

sin (kmx)
0

∑
An sin (knx) dx =

n=1

L

∑∞ L

An
n=1

∫
sin (knx) sin (kmx) dx

0

= Am
2
⇒ Am =

2

L

∫ L

0

y(x) sin
(nπ

dx
L

a) The function is y(x) = Ax(1

)
− x) From our discussion above,

2
An =

L

∫ L

0

y(x) sin
(nπ
L
x
)
dx =

2

L

∫ L

0

Ax(1− x) sin
(nπ

x
L

)
dx

2AL2

= 2
π3n3

 − 2︸ cosnπ︷︷ ︸
+1 n even -1 n odd

−nπ sinnπ︸ ︷︷ ︸
=0 ∀n

 ⇒ An =
8AL2

π3

1
n = 1, 3, 5, 7 . . .

n3

b) The Fouri{ er expansion of a trigonometric function is itself. By inspection, the Fourier coefficients

A if n = 1
are An = More formally,

0 if n 6= 0.

2
An =

L

∫ L

0

A sin
(π
L
x
)

sin
(nπ A

x
L

)
dx =

{
if n = 1

0 if n 6= 0.

c) The function is y(x) =

{
A sin

(
2πx
L

)
if 0 ≤ x < L/2

Hence, the Fourier coefficients are
0 if L/2 ≤ x ≤ L.

2
An =

L

∫ L

0

y(x) sin
(nπ
L

)
dx =

2A

L

∫ L/2

0

sin

(
2π

L
x

)
sin
(nπ
L
x
)
dx = −4A

π

1

n2 − 4
sin
(nπ

2

)
We now must be careful because An is ill-defined at n = 2. We can evaluate A2 using L’Hopital’s

4A
rule: A2 = −

π

π
2

cos
(
nπ
2

)
2n

∣∣∣∣∣
n=2

=
A
.

2

When n is even (except n = 2), An = 0. Hence, An =

0 if n = 4, 6, 8 . . .

A/2 if n = 24A

π

sin (nπ/2)
if n = 1, 3, 5, 7 . . .

4− n2

Problem 5.4 − Fourier series for a square wave

Since the function is symmetric around 0, the A0 term is zero, and since the square wave is
1

odd, the other An terms are also zero. The Bn terms are: Bn =
π

∫ 2π

0

f(x) sin
(nπx

dx
π

)
=

1 2π

f(x) sin (nx) dx. Again, because the square wave is odd Bn = 0 for n = 0 and all
π 0
even

∫
values of n. For the odd values of n, we can simplify the integral since we only need
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2
to integrate over the first half of the wave and multiply by 2: Bn = )

π

∫ π

f(x) sin (nx dx.
0

2
But the amplitude of 0.5 in f(x) cancels this factor of two and the final result is Bn = .

nπ

2
f(x) =

1
sin(

π

[
x) +

3
sin(3x) +

1
sin(5x) + . . .

5
The figure shows the first, first+second, and

]
first+second+third terms as red, blue, and

green lines, respectively. Notice how each

added term partly “corrects” the places where

the previous sum misses the desired function.

Problem 5.5 – Phase and group velocity in your bathtub
2 T

The dispersion relation for deep-water waves is approximately ω = gk + k3, where ω = 2π/λ.
ρ

a) For very short wavelengths (λ � 1.7 cm), the k3 term dominates. Then ω2 ≈ T/ρk3. Then,

ω
the phase velocity is vp = =

k

√
Tk

ρ
. The group velocity is vg =

dω

dk
=

3

2

√
Tk

. Combining these
ρ

two equations gives vg = 3/2vp.

b) For very long wavelengths√ (λ � 1.7 cm), the k term dominates. Then ω2 ≈ gk. Then, the

phase velocity is vp =
g

k
and the group velocity is vg =

1

2

√
g
. Hence, vg = vp/2.

k

Problem 5.6 – Shallow-water waves (Home experiment)

This experiment was performed by Igor Sylvester, an 8.03 students in 2004.

a) I made many measurements and finally concluded that it took about 3 s for a wave packet to

travel 4 times the diameter (23 cm) of a pan with a depth of 9 mm. The uncertainty in this is

about 0.5 s (17%). I used a stopwatch that can measure time with an accuracy of 10 ms, but the

uncertainty is much larger because it’s not easy to tell precisely where the packet is.

b) The speed of the wave packet based on my results is 31 ± 5 cm/s. This is in good agreement

with the predicted value of 29.7 cm/s.

Problem 5.7 – (French 7–20) Why are deep-water waves dispersive?

a) The potential energy of the liquid is U = mgh = (ρAy)gy = ρAgy2. The kinetic energy is

1
K =

2
mv2 =

1

2
(ρAl)

(
dy

2

dt

)
. Then, we can derive the equation of motion from conservation of

∂E
energy:

∂t
= 0 = (2Aρgy+ρAlÿ)ẏ ⇒ ÿ+

2g√ y = 0. This is a simple harmonic oscillator. Hence,
l

the period of oscillations is T = π 2l/g.

b) We know that v = νλ. Assuming that λ ≈ 2l, v = 2νl =
√
gλ/π.

c) For λ = 500 m, v = 27 m/s ≈ 97 km/h ≈ 61 mi/h.
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Problem 5.8 – Energy in waves

a) Using v =
√
T/µ and ν = vλ, Eq. (7-38) on page 242 in French, which gives the energy per

T
wavelength in a traveling wave, can be rewritten: Wcycle = 2π2ν2A2λµ = 2π2A2 . The equation

λ
π2A2T

Eλ = is the energy stored in one wavelength of a standing wave. Note that Wcycle = 2Eλ.
λ

This is correct because the energy per wavelength in a traveling wave is double that of a standing

wave (same amplitude).

b) The graph shows the deformed string (highly

exaggerated). If the tension remains approxi-

mately constant (for modest distortion) then the

work needed to pick up the string is

W =

∫ A

F (y) dy, where
0

T

y
F (y) = 2T sin θ ≈ 2T

L/2
=

4T

L
y. Then, W =

∫ A

0

(
4T

L

)
y dy =

2TA2

.
L

c) WTOT = nW = n

∫ An

0

(
2T

L/2n

)
y dy =

2Tn2A2
n .

L

2
d) For the triangular wave, L = nλ/2 and Eλtriangle =

n

2Tn2A2
n

nλ/2
=

8TA2
n .

λ
Eλ

Then, the energy ratio is sine

Eλtriangle
=
π2

1
8
≈ .25.

Problem 5.9 – Energy in traveling waves on a string

a) A standing wave with amplitude A can be created by two traveling waves, moving in opposite

directions, each with amplitude 0.5A. Thus, the total energy (per wavelength λ) is half that of the

standing wave with amplitude A. When the standing wave stands still, all it energy is in the form

of potential energy, which is proportional to A2. For one of the two traveling waves (amplitude

0.5A), the potential energy is proportional to A2/4 and it is independent of time. Thus, its kinetic

energy (at any moment in time) must also be A2/4, so that its total energy per wavelength is half

that of the standing wave.

b) Let’s calculate the kinetic and potential energies in one wavelength explicitly. The wave is

y(x, t) = A sin(ωt− kx), where k = 2π/λ, ω = vk and v2 = T/µ. The kinetic energy is

K =

∫ λ 1

0 2
µ

(
∂y

∂t

)2

dx =
µ

2

∫ λ

0

A2ω2 cos2(ωt− kx) dx =
µA2ω2

2

λ

2
=
TA2π2

.
λ

The potential energy is

U =

∫ λ 1

0 2
T

(
∂y

∂x

)2

dx =
T

2

∫ λ

0

A2k2 cos2(ωt− kx) dx =
TA2k2

2

λ

2
=
TA2π2

.
λ

As expected, the kinetic and potential energies are equal. The total energy in one wavelength of a

traveling wave is 2TA2π2/λ.
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