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Notes for Lecture #14: Generating EM Waves, Energy, Scattering 

There is a local energy density wherever there is an electric or magnetic field. The energy density, 

in SI units, is measured in joules per cubic meter, i.e. Jm−3 . For an electric field, it is given by 

uE =
1 
t0E

2 and since “there is no such thing as a free lunch”, reflects the work done to bring
2 

charges together that create the field (1:00). Similarly, in making currents that create a magnetic 

field, work must be done, and that is reflected in the energy density in a magnetic field being 
B2 

uM = . In a traveling EM wave, the magnitude of the magnetic field is related to that of the 
2µ0
 

|EE |

electric field by |BE | = so, in that specific case, the magnetic energy density can be rewritten 

c 
B2 E2 1 2 1 

as uM = = = t0E
2 where to get the last form we used the fact that c = . We see 

2µ0 2µ0c2 2 t0µ0 
that the energy density in the electric field of a traveling wave is exactly the same as the energy 

density in its magnetic field. This reflects the wonderful symmetry that these fields are necessarily 

intertwined in the traveling wave solution of Maxwell’s equations. The total energy density is thus 

(in vacuum) (3:00): utot = t0E
2 = t0EBc. 

The wave, of course, moves and in so doing it carries energy with it. 

We would like to calculate how much energy flows through one square 

meter if an EM wave flows perpendicularly through it as shown. The 

dimensions of the expected result are Js−1m−2 = Wm−2 . This rate of 

energy flow through one square meter can be expressed as the energy 

that was in the box and that flowed out through the end in one second: utotc = t0EBc2 = . 

EE × BE
This is reminiscent of the Poynting vector SE seen in earlier studies, where SE = in Wm−2 

µ0 
(5:00). 

Both EE and BE are time variable, so the Poynting vector also varies in time. Although the fields 

vary as E = E0 cos ωt and B = B0 cos ωt, this rapid variation of the Poynting vector would only 

show up on spatial scales of less than a wavelength. The overall variation of the Poynting vector 

is the square of a cosine, and (cos2 ωt = 1/2). Taking this into account, the averaged magnitude 
1 E2E0B0 0of the Poynting vector is (S) = = in terms of the amplitudes of the fields, and where 
2 µ0 2µ0c 

the latter form shows that it is only necessary to know the peak electric field amplitude in order 

to completely specify the Poynting vector. Once more, this reflects the necessary coupling of EE 

to BE and in fact a specification of B0 would also be sufficient to specify the Poynting vector. If 

EB 
µ0 



we consider a traveling EM wave in which E0 = 100 V/m, then we can plug in values to get that 
1 1002 

(8:00): (S) = = 13 Wm−2 . 
2 µ0c 

If you expose your body to this energy flow of visible and infrared light, your body will absorb it 

(unlike X-rays or gamma radiation which would go right through you). This amount of this type 

of radiation is not harmful: the body itself emits about 100 W over an area of roughly one square 

meter, so this is small in comparison. If we now consider an electric field of E0 = 103 V/m, the 

Poynting vector, which goes as the square of the electric field, becomes (S) = 1.3 kW/m2, which 

is a a dangerous amount of visible and infrared, potentially causing skin cancer or worse. 

The Sun is a powerful light source, producing 3.9 × 1026 W, and Earth is 150 × 106 km away. 

We can calculate how many joules per second go through one square meter at this distance. The 

portion of the total emission that would go through 1 m2 is the ratio of 1 m2 to the total area of a 
3.9 × 1026 

spherical surface at the distance of the Earth from the Sun. We thus get that S = = 
4π(150 × 109)2 

1.4 kW/m2 . That is why the number 1.3 kW/m2 can be dangerous (11:20). 

This number, called the solar constant, is very important for discussions of harvesting solar energy. 

For every square meter one can expose to solar energy, one can never get more than about 1400 

joules per second of energy. The (2004) electric power capacity of the United States was about 

700,000 MW, given by about 700 power plants, each of about 1,000 MW. The U.S. is energy hungry, 

consuming about one quarter of the Earth’s electric power consumption. Basically, to get a lot of 

electricity from solar power, one would need hundreds of square km of very expensive solar cells 

in the desert. The efficiency is not 100% and the situation gets worse when the Sun is low in the 

sky. So, the solar constant imposes a limit on how much one can get from solar power (13:00). 

This leads us to ask whether there really is such a thing as an electric field of 1000 V/m in the 

solar radiation. The radiation is not in the form of idealized plane waves, and there is not just one 

wave from the Sun having this large electric field amplitude. The Poynting vector from the Sun is 

1.4 kW/m2, but one cannot naively associate with that an EM field of 1000 V/m. 

This brings us to the topic of how EM waves are produced. In a nutshell, this is due to the 

acceleration of electric charges. Charges that are stationary or moving at constant velocity are 

surrounded by radial electric fields. Whether at rest or in constant motion, there are radial field 

lines with no kinks in them (15:00). The moment a charge is accelerated, as is looked at in more 

detail below, there is a kink put into the field line, and that manifests itself as EM radiation. 

We consider a charge q at the point O and initially at rest. It is now accelerated in the upward 

direction, with an acceleration Ea for Δt seconds. It ends up at location O/. The velocity at O/ 
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will be upward, Eu = EaΔt. After this, with no more acceleration, it continues upward at constant 

velocity and at some later time t is found at the point O//. The total time from starting the 

acceleration at O until getting to O// took t + Δt seconds. If one considers a sphere around O 

of radius γ = c(t + Δt), then outside that sphere there cannot be any knowledge that the charge 

was moved, since that message travels with the speed of light c. So, the field in that region points 

radially outward from point O (18:45). 

Once the charge is moving uniformly, 

the field is again radial. The corre­

sponding field line (i.e. at the same 

angle as a line from O) can be drawn 

from O//. It points radially outward 

from O// and extends out to a radius 

of ct from O/, the point at which 

the motion became uniform. Since 

it is actually the same field line, the 

line inside the inner sphere must be 

connected to that outside the outer 

sphere by a line in the region in 

between (21:00). The portion of this line perpendicular to the radius has a length ∼ u⊥t, an 

approximate result since the charge was not traveling with speed u for all of the period t. 

In this context ⊥ means “perpendicular to r”. If u « c and Δt « t, then r = ct » ut. So, the 

distance moved along that leg of the triangle is very close to u⊥t. Only the very small distance 

O − O/ is ignored. The radial thickness of the shell is cΔt (23:15). An approximately linear 

segment joining the inner and outer parts of field line can be decomposed into parts parallel to the 

radius, El, and perpendicular to it, E⊥. This whole shell containing the kink travels outward at 

the speed c, and the field E⊥ is very suggestive of the transverse field that we saw exists in an EM 

wave. If an observer was looking in toward where the charge accelerated, then this perpendicular 

E field would correspond to that of a traveling wave. 

EThe task is now to calculate that perpendicular E in the shell (25:40). From the geometry, 
E⊥ u⊥t E⊥ u⊥t a⊥(Δt)t a⊥t 

= . Since u = aΔt leads to u⊥ = a⊥Δt, we find = = = . We could 
El cΔt El cΔt cΔt c
 

a⊥r
 
get E⊥ if we could figure out El. Using t = r/c gives E⊥ = El (27:45).2c

MIT OCW 8.03SC 3 Lecture Notes #14
 



We can find El by considering Gauss’ Law. One side of a 

Gaussian pillbox will be outside the region that knows about 

the change in the charge’s motion, and the inside will have the 

El we want to figure out. There is no charge in the box, so 

the surface integral of EE · n̂ must be 0. The contribution from 

the sides is 0 since E⊥ is the same on both sides, i.e. as much 

points “out” as “in”, and El ⊥ n̂. Since the top and bottom 

areas are basically the same, EE must be the same on both to 

Egive a surface integral of 0. The field outside is simply E = 
q a⊥r a⊥r q a⊥ q

El = . Substituting into E⊥ = El, we have (30:50): E⊥ = = . 
4πt0r2 c2 c2 4πt0r2 c2 4πt0r 

This is the classic derivation of the result already known in the late 19th century for the strength 

of the electric field perpendicular to the direction in which a disturbance is traveling. It is inversely 

proportional to r which is also a natural consequence of the conservation of energy. This is different 

from static electric fields, which fall off as 1/r2 . Another difference from the static case is that we 

have to account for the time for the radiation to get from the point of emission to the point of 

observation. If the radiation is observed at time t, then in fact it was emitted at a time t/ = t − r
c . 

a⊥(t
/)q

Incorporating this time delay, the equation becomes EE (Er, t) = − (we will see the origin of 
c24πt0r 

EE × E
the minus sign later). As before, we could calculate BE (Er, t) and in turn SE(Er, t) = 

B 
(33:50). 

µ0 

We must also consider that a⊥ depends on the observation direction. The angle θ between the 

acceleration and observer is zero looking along the line of the acceleration, in which case there would 

be no perpendicular component. Looking in at 90◦ , a⊥ is the same as a, the total acceleration. So 

the strength of the electric field is a strong function of θ. 

From the original diagram, it can be seen that the kink is in the opposite direction to Ea, which 

explains the minus sign noted above. The component a⊥ is proportional to sin θ so the Poynting 

vector is proportional to sin2 θ. The radiation has a strong peak of energy emission in the direction 

perpendicular to the acceleration and is zero along the acceleration. This wave is spherical, not a 

plane wave but far from the origin a plane wave solution is a reasonable approximation (37:20). 

To summarize, for an acceleration Ea of a charge q, as observed at a point Er, the electric field EE is in 
Ethe plane of Er and Ea, E ⊥ Er, |EE | ∝ |a⊥|, and |EE | ∝ 1/r. If q is positive, then EE is in the direction 

opposite to Ea⊥, and if q is negative, then EE is in the direction of Ea⊥ (39:15). 

The 1/r dependence is related to conservation of energy since the Poynting vector is proportional 

to E2 . The area of a spherical surface goes up as the r2: if at the same time the Poynting vector 

q 
, and so, in the shell, 

4πt0r2 
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goes down by 1/r2, the total energy flowing through any spherical surface will be the same. 

The 80 MHz transmitter (wavelength 3.75 m), used last lecture to show the effect of polarization, 

is now used to see the effect of the angle θ. When the transmitting and receiving antennas are 

parallel the signal is largest, while when they are perpendicular (but, unlike before, still in the 

same plane) the light is not illuminated at all (42:30). 

To calculate the total power over a sphere, the Poynting vector, with its sin2 θ dependence, must 

be integrated over a sphere. The result is the power (energy per second in watts) over any sphere 
2 2 

being P = 
q a

3 
(44:35). This is known as the Larmor formula. It gives the power that must 

6πt0c
go into the electromagnetic fields when a charge is accelerated, in addition to the mechanical work 

that must also be done to accelerate the charge (due to its mass). 

How do we in fact accelerate charges? The answer is a bit embarrassing. In almost all cases, we 

accelerate charges by exposing them to electromagnetic radiation. This seems like a “Catch-22” 

in that one usually uses EM radiation to do the acceleration to get EM radiation. Consider an 

electron exposed to plane EM radiation E0 cos ωt producing a force of F = qE0 cos ωt (46:10). 

We consider that the electron is bound, as in an atom, and in equilibrium, so that there is a 

restoring force. Ignoring damping, we can write that there is a resonant frequency ω0
2 = k/m, 

where k is an effective spring constant and m the mass of the electron. The equation of motion 

is ẍ + ω0
2 x = 

q
E0 cos ωt, which was seen before in the case of forced oscillations The solution is 

m
 
(q/m)E0
 

x = A cos ωt with amplitude A = . To calculate how much radiation is produced, we need 
ω2 
0 − ω2 

−qE0ω
2 

to know the electron’s acceleration, ẍ which is (49:50) ẍ = −ω2 x = cos ωt. 
m(ω0

2 − ω2) 

ω4 

The total power is proportional to a2, and forgetting all the constants P ∝ . If the 
(ω2 − ω2)2 

0 
motion is far from resonance such that ω << ω0, this simplifies to the very famous result that 

P ∝ ω4 . This is known as Rayleigh scattering. It is called scattering, since the radiation coming 

out has the same frequency as the incoming radiation. There is no change in color but only in 

direction. For oxygen and nitrogen in the atmosphere, the resonance frequency is in the ultraviolet 

(UV), so the condition of being far from resonance holds. Blue light has a higher frequency than 

red light so is more efficiently scattered. Since blue light has a wavelength of about 4500 Å (450 
ωblue 

nm) and red light about 6500 ˚ ≈ 1.5. When A (650 nm), the ratio of their frequencies is about 
ωred 

raised to the fourth power to give the relative scattering efficiency we get 1.54 ≈ 5. Blue light is 

scattered about five times more than red light. For small particles in the atmosphere (a few tenths 

of a micron) this result holds, and for larger particles the effect is not very pronounced. By the 

time the particle size is 5 microns, all frequencies of light scatter about equally. 
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Another effect of Rayleigh scattering is that the light becomes linearly polarized, in fact 100% 

polarized for scattering at 90◦ (54:00). Consider unpolarized light coming directly out of the page. 

The incoming EE , and hence the acceleration of charges causing the scattering, is in the plane of 

the page but its direction changes rapidly. The outgoing EE is in the plane of the acceleration and 

the line to the observer, with the latter also in the plane of the page for 90◦ scattering. Thus the 

EE of the scattered light must also be in the plane of the page. Finally, EE ⊥ Er, so the outgoing EE

can only points in one direction, i.e. 100% polarized. (56:55). 

This effect is demonstrated using cigarette smoke. In smoking a cigarette (not advised due to 

adverse health effects) combustion creates extremely fine dust particles, a few tenths of a micron 

in size and thus ideal for Rayleigh scattering. If such smoke is blown into a vertical white light 

beam, blue light will be preferentially scattered by these very small particles. White light contains 

all colors, but since the blue is better scattered, the smoke will appear blue from the side. In the 

demonstration, the angle of scattering out into the audience is close to 90◦ . Thus the scattered light 

is expected to be linearly polarized in the horizontal plane. To get a lot of smoke, multiple cigarettes 

are used! The light does appear appears bluish and is also shown to be polarized (1:00:30). 

If the smoke is held in the lungs, the water vapor naturally present there will precipitate onto the 

smoke particles, making instead small water drops which are too large to do Rayleigh scattering. 

We expect the scattering of the light to instead be white. This is demonstrated and an “instant 

replay” (1:02:35) most clearly contrasts the cases of smoke and the larger condensed droplets. 

The sky is blue due to light scattering from very fine dust and even density fluctuations between 

molecules. In clouds, however, there are water droplets which are fairly large and scatter all colors 

of light without much preference, thus appearing white. If you are standing on Earth with the Sun 

quite high in the sky at midday, then in a direction away from the Sun, the sky is blue. If one 

looks 90◦ from the Sun, the sky will be 100% linearly polarized. 

The sky scatters about 1% of the sunlight, more when the Sun is lower in the sky due to the 

longer path in the atmosphere. Therefore, a setting Sun (or Moon or planet or stars) appears 

red (1:05:20). Anything lit up by the Sun’s setting or rising beam, for example a cloud, is also 

red. The more fine dust is in the atmosphere, the more vividly colored are sunsets (for example 

after injection of volcanic dust or pollution). Example illustrations are also shown for stars in the 

Pleiades cluster, an astronaut walking on the Moon, and Aerogel. The latter is a material which 

has only four times the density of air and in fact is 99.8% porous, with very small silica particles, 

of 1-2 nm size (much smaller than the wavelength of light). Light passing through aerogel appears 

bluish while its shadow, contained the remaining light that was not scattered, is reddish. 
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In a total lunar eclipse, when the Moon is completely in the shadow of the Earth, it appears red 

in color (1:10:00). When the Moon covers the Sun as seen from Earth in a total solar eclipse it 

just covers the Sun. Since the Earth is four times larger in diameter than the Moon, when the 

Earth covers the Sun as seen from the Moon (causing a total lunar eclipse as seen from Earth), it 

is totally covered, but the scattered sunlight from the atmosphere is seen around the edge. This 

sunlight hitting the Moon’s surface has traversed a large length of atmosphere, so it is red in color. 

From the Moon one would see the Earth, four times larger than the Moon would be in our sky, 

and very black with the Sun behind it, but surrounded by a beautiful red ring of atmosphere. 

Finally, “the mother of all demonstrations” is done (1:12:00). It will simulate a blue sky, a red 

sunset, and the linear polarization at 90◦ from the Sun. Sulfuric acid is added to a container with 

sodium thiosulfate dissolved in water, causing a chemical reaction which will precipitate small 

particles of sulfur. Initially, these are very small, less than a micron in diameter. The white light 

from a projector will be scattered from the clear-sided container out into the audience’s direction. 

Initially, very little goes in that direction since the sodium thiosulfate solution is very clear. When 

the reaction occurs, and small sulfur particles are in the water, Rayleigh scattering will cause blue 

light to go out toward the audience. Those for whom the scattering angle is 90◦ will see 100% 

polarized light, in the vertical direction. Those in other directions can expect to see partially 

polarized light. As time goes on, there will be more and more sulfur, and more scattering, so 

the transmitted light will become redder. After the sulfuric acid is added, some blue scattered 

light is seen and a polarizer rotated in front of the container shows a high degree of polarization 

(1:15:30). The “Sun” of the transmitted beam appears to steadily become more reddish. Over 

time, the scattered beam gets brighter, the “Sun” gets redder and clouds appear (likely due to 

irregularities in the chemical reaction). “Sunset” is simulated by moving the projected beam 

downward to simulate a horizon, to the laughter of the audience. 
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