
Massachusetts Institute of Technology OpenCourseWare

8.03SC Fall 2012

Problem Set #7 Solutions

Problem 7.1: Speed checked by radar

a) λ = c/f ⇒ f = 3× 108/3× 10−2 = 1010 Hz

b) Frequency received by moving car: f ′ ' f(1 +β) where β = v/c is positive for approaching car.

Frequency received by police car: f ′′ ' f ′(1 + β) ' f(1 + β)2 ' f(1 + 2β)

Problem 7.2: Can’t you hear the whistle blowing

a) The(original Doppler expression for sound is
v + v

f ′
D cos θD

= f where v, vS and vD are the
v vS cos θS

speeds of sound,
−

the source

)
and the detector with respect

to the medium, respectively. θD and θS are angles as shown

in the figure. Since vS/v ∼ 20/340 ∼ 0.06� 1 and vD = 0,

the Doppler expression can thus be simplified as: Vs

Vd

Detector
Source

θD

θS

etector

v
f ′ =

(
v − vS cos θS

)
f ≈

(
1 +

vS
cos θS

v

)
f

As the train passes the detector, the angle θS goes from 0 to π.

Far away approaching θ ∼ 0, so f ′ ≈ (1 + 0.059)f

ff
′
ar approach = 1059 Hz

Far away receding θ ∼ π, so f ′ ≈ (1− 0.059)f

ff
′
ar recede = (1− 0.059)f = 941 Hz

Closest approach θ = π/2 (cos θ = 0!)

ft
′
=0 = (1− 0.059 cosπ/2)f = f = 1000 Hz

b) At t = −10 sec, cos θ = 200/100
√

5 = 0.89

ft
′
= 10 = (1 + 0.059× 0.89)f = 1053 Hz−

At t = −5 sec, cos θ = 100/100
√

2 = 0.71

ft
′
= 5 = (1 + 0.059× 0.71)f = 1042 Hz−

c) The figure shows the plot of heard frequency

versus time for the train whistle.
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Problem 7.3: Our expanding universe - simplified

s+ ∆s
a) s = Rθ so θ = s/R =

R + ∆R
. Dividing by ∆t, s

(
∆R ∆

=
∆t

)
s

R
∆t

⇒
(

∆s

∆t

)
=

[
1

R

∆R
s

∆t

]
.

b) Hubble’s Law: v = Hd, here v is the recession velocity of a galaxy, and d is the distance between

us and that galaxy. For the balloon universe, ds/dt = v, and s = d. Thus H = (1/R)(∆R/∆t).

The units for H are 1/time. ∆R/∆t is the expansion rate of the balloon.

c) If ∆s/∆t = l, the recession velocity at the horizon equals the maximum velocity of the ants.



∆
For constant ∆R/∆t, this occurs at a distance smax = Rl

(
R

−1

Note: R is the radius of the
∆t

universe (Here, the radius of the balloon).

)

d) Multiply the equation given in the problem

(
v2

2
=
GM

+ constant by 2/R2 and introduce
R

3

(
1

)
V = ∆R/∆t and ρ = 3M/4πR . Then

R

∆R

∆t

)2

=
8πGρ

3
+

2(constant)

R2

e) For a flat universe, the constant= 0, so H2 =

(
1

R

∆R

∆t

)2

=
8πGρ( 3

3⇒ ρ0 = H2 10−26 kg/m3 10−29 g/cm3 for H0 = 70 km/sec per Mpc.
8πG

)
0 ∼ ∼

f)

(
1

R

∆R

∆t

)2

=
2MG

R3
+

2(constant)

R2
. As before, the constant=0, so ∆R/∆t =

√
2MG/R and

∆t = ∆R
√
R/2MG. Integrating gives t =

2R3/2

3
√ t

2
⇒ R(t)

MG
∝ 2/3.

Now, since H = ∆R/(R∆t) and R t2/3, one can find an expression for H in terms of t. Let

2/3 ∆R
∝

R = ct , then
∆t

=
2

3
ct−1/3 H =

1

ct2/3

(
2

3
ct−1/3

)
=

2

3t
The age of the universe is now equal to t0 = 2/3H0 ∼ 9.3× 109 years.

g) Combining equations shows that H is inversely proportional to R3/2 (no time dependence!).

Since R was smaller in the past, H must have been larger.

h) H becomes negative if ∆R/∆t becomes negative. This can occur for a closed universe that is

collapsing. Thus, the redshifted galaxies and QSO’s would become blueshifted.

Problem 7.4 – Doppler shifts of EM radiation ⇒ a black-hole X-ray binary

The figure shows the binary system at two times.

a) Since the two orbits are circular, the speed of the

two masses are v1 = 2πr1/T and v2 = 2πr2/T . Apply-

ing Newton’s second law to m1,

F = m1a

Gm1m2 v2
= m 1

1
(r1 + r2)2 r1

= m1
1

r1

(
2π
r1
T

)2
= m1

4π2r1
T 2

⇒ T 2 4π2(r1 + r2)
3

= .
G(m1 +m2)

Note that we could have applied Newton’s law to m2

and gotten the same result.

m1

m1

m2

m2

r1

r2 observer

b) Since the absorption line is in the visible spectrum, it must be produced by the donor (m1).

The figure on the next page shows the donor at the two positions where the observer measures

the maximum radial velocity, vmax. Note that v1 = vmax. The minimum and maximum of the

observed wavelengths correspond to positions 1 (m1 moving towards the observer for a blue shift)
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and 2 (m1 moving away from the observer for a red shift), respectively. The doppler shift is given
λ′

by
λ

=
1− β cos θ√ , where β = v/c, λ′ and λ are the wavelengths in the reference frames of the

1− β2

observer and the star, respectively. Here, θ = 0.

λ′
Hence, =

λ

√
1− β
1 + β

≈ 1 − β ⇒ β ≈ 1 − λ′
.

λ

Since λ = (499.75 nm + 500.25 nm)/2 = 500 nm,
499.75

β ≈ 1−
500

= 5× 10−4. Thus, v = 150 km/s.

1

2

r1 observer

Finally, the period of the spectrum shift of the donor equals its orbital period, i.e, T = 5.6 days.

c) Using v1 = 2πr1/T , r1 ≈ 1.16× 1010 m.

4π2r3(x+ 1)3
d) Let x = r2/r1. Then, eliminating r2 in the equation derived in part (a), T 2 = 1

G(m1 +m2)
From the definition of center of mass, m1r1 = m2r2. Then, m2 = m1/x. Eliminating m2,

4π2r3 3

T 2 = 1(x+ 1)
. Substituting for the known values of G, T , r1 and m1, we arrive at the

Gm1(1 + 1/x)
following equation 15.32 = x3 +2x2 +x. The only real solution to this equation is x = 1.87. Hence,

r2 = xr1 = 2.17× 1010 m.

e) m2 = m1/x ≈ 16Msun ≈ 3.19× 1031 kg.

Problem 7.5 (Bekefi & Barrett 5.3)1 – Transmission line

a)

i) Capacitance
In order to find the capacitance of the system, we need to

assume that one wire holds a linear charge density µ and the

other one holds −µ. Consider only the positively charged

wire, then we can use Gauss’ law to find the electric field

outside the wire. We can imagine a cylindrical gaussian

surface of radius r and length l concentric to the wire with

E

r

l

flat end pieces. By symmetry, the electric field is normal to the curved surface of the cylinder

but it is parallel to the flat ends. The area of the curved portion of the Gaussian surface is

2πrl. Then, applying∮ Gauss’ Law,
Q~E

S

· ~dA =
ε0

∫
sides

~E · d ~A︸ ︷︷ ︸
=0

+

∫
curved

~E · d ~A =
Q

ε0

lµ
E2πrl =

ε0
⇒ E =

µ
,

2πrε0
where E is the electric field magnitude for r ≥ a. The potential difference between the wire

1‘The notation “Bekefi & Barrett” indicates where this problem is located in one of the textbooks used in 8.03

in 2004: Bekefi, George, and Alan H. Barrett Electromagnetic Vibrations, Waves, and Radiation. Cambridge, MA:

MIT Press, 1977. ISBN: 9780262520478.
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b

and a distance b away is V ′ =

∫
~E

a

· d~r =

∫ b µ

a

µ
dr =

2πε0r

b
ln

2πε0

(
. Due to the symmetry

a
of the two wires, the electric potential between the wires is twice the p

)
otential due to one wire.

µ
Hence, the capacitance per unit length is C0 =

V
=

µ

2V ′
=

πε0
. Notice that C0 and ε0

ln (b/a)
have the same units, i.e. F/m.

ii) Inductance

Let’s assume that each wire carries∮ a current I in opposite directions. Recall
1~B

L

· d~r = µ0I0 +
c2
∂ΦE

∂t
The integral is over a closed path L. If we attach any surface

with boundary L then I0 is the current penetrating that

surface and ΦE is the electric flux through that surface.

Consider the magnetic field due to one wire only and a

circular Amperian loop of radius r concentric to the wire.

r
I

B

Since the current is constant, the E-field is constant so ∂ΦE/∂t = 0. By symmetry, the mag-
~netic field B is constan∮ t around the loop. Hence,

µ I~B d~r = 2π
L

· B ⇒ 0
r B = for a b.

πr
≤ r

2
≤

Consider a rectangular surface of length l and width b, as

shown in the figure. Then, the magnetic flux through that

surface due to the magnetic field from only one wire is

I
φB

∫
~B

S

· ~= d = l

∫ b µ0
A

a 2πr
dr =

lµ0

2π
ln

(
b

I
a

)
If we now add the second wire into the picture, the magnetic

B b

l

lµ0I
flux doubles. Hence, ΦB =

π
ln

(
b

.
a

)
Inductance is defined as L = ΦB/I. Hence,

ΦB
L0 =

I

1

l
=
µ0

π
ln

(
b

.
a

)
Notice that L0 and µ0 have the same units, i.e. H/m.

1
b) v = √ 1

=
L0C0

√ = c
µ0ε0

c) Z0 =

√
L0

C0

=
ln (b/a)

π

√
µ0

ε0

d) C0 ≈ 11 pF/m. L0 ≈ 1 µH/m. Z0 ≈ 302 Ω.

Problem 7.6 – Coaxial cable

a) By convention, the current of the reflected wave is negative. Also, remember that the reflected

wave travels in the opposite direction to the transmitted wave, so the wavenumber k flips its sign.
Vi

Using V = IZ, I(z, t) =
Z0

ej(ωt−kz) − Vr
ej(ωt+kz)

Z0

b) Since the resistor and the capacitor are in series, the total impedance is the sum of their
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j
impedances: ZL = R− 1

= R +
ωC

.
jωC

c) V (0, t) = (Vi + Vr)e
jωt 1

I(0, t) = (Vi − V t
r)e

jω The boundary conditions are V (0, t) = VL
Z0

VL
I(0, t) = IL Then, using the result derived in part (b), ZL =

V (0, t)
=

IL I(0, t)
= Z0

Vi + Vr
. Solving

Vi − Vr
ZL

for Vr gives Vr = Vi
− Z0 (R

=
− Z0)− j/ωC

ZL + Z0 (R + Z0)− j/ωC
d) Yes, our expression for Vr/Vi is consistent with the general expression.

C
e) If R = Z0, Vr = i

−j/ω
V . Then, the magnitude and phase of V

2Z0 −
r are

j/ωC

|Vr| =
|Vi|√

1 + (2Z0ωC)2
tanφ(Vr) = −2Z0ωC.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

 Z0C

|V
r / 

V i|

Amplitude of reflected voltage wave

0 1 2 3 4
pi/2

pi/4

0   

 Z0C

Phase of reflected voltage wave

Problem 7.7 (Bekefi & Barrett 5.4) – Rectangular waveguide

We are given Ey = E0y sin(kxx) cos(kyy) cos(ωt − kzz). However, we are not told anything about

Ex or Ez. We cannot assume that Ex = Ez = 0. Instead, we use Maxwell’s equations to find the
~components of E. Since the wave propagates in the z-direction, Ez = 0. Recall

∂E∇~ · ~ x
E = 0

∂x
+
∂Ey
∂y

= 0 ⇒ ∂Ex
= E0 ky sin(kxx) sin(kyy) cos(ωt kzz)

∂x y −

k
So, Ex = − y

E0y − ~cos(kxx) sin(kyy) cos(ωt kzz) We then have E = Exx̂+ Eyŷ
kx

∂2Ey
a) The y-component of the wave equation gives

∂2Ey
+

∂x2 ∂y2
+
∂2Ey
∂z2

=
1

c2
∂2Ey
∂t2

k2x + k2y + k2
1

z =
c2
ω2 ⇒ ω = c

√
k2x + k2y + k2z .

We encourage you to check that the x-component of the wave equation gives the same result.

b) The parallel component of the electric field must vanish at the walls, i.e.

E (x = 0) = E (x = a) = 0. Ey(x = a) = E0y sin(k‖ ‖ xa) cos(kyy) cos(ωt− kzz) = 0
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mπ
sin(kxa) = 0 ⇒ kx = for integers m

a
≥ 0.

k
c) Ex(y = b) = − y

E0y

nπ
cos(kxx) sin(kyb) cos(ωt− kzz) = 0 sin(kyb) = 0

x

⇒ ky =
k

for integers
b

n ≥ 0. There is an additional constraint on the integers m and n. If m = n = 0 then we have the
~trivial solution E = 0. Hence, we restrict m and n such that either m = 0 or n = 0 but not both

at the same time.

d) Combining the results from the previous parts, ω = c

√(mπ
a

)2
+
(nπ 2

b

)
+ k2z

ω
kz =

c

√
1−

(mπc
ωa

)2
−
(nπc
ωb

)2
Let ωm,n = πc

√(m
a

)2
+
(n
b

)2
. Then, kzc =

√
ω2 − ω2

c .

Since a > b, the restriction ω2− ω2
c ≥ 0 implies that the lowest frequency ω for which propagation

is possible is ω = ω1,0.

Note that there is no set of discrete values of ω that can propagate through the waveguide. The

problem is very different from resonance frequencies. Here, all values ω ≥ ω1,0 can propagate.

The phase and group velocities are
ωz

vpz =
kz

=
c√

1− (ωc/ω)2
vgz =

dω

dkz
=

c22kz

2c
√(

mπ
a

)2
+
(
nπ
b

)2
+ k2z

=
c2kz
ω

=
c2

vpz

The limiting values are

ω →∞ ⇒ kz →∞ vpy → c vgy → c

ω → ωc ⇒ kz → 0 vpy →∞ vgy → 0.

Notice that vpz ≥ c and vgz ≤ c. The group velocity–and not the phase velocity–must be less or

equal than the speed of light. Notice also that here vpzvgz = c2.

We can graphically display the values of ω for various values of m and n. Recall that there is no

solution for m = n = 0. Since a > b, ω1,0 < ω0,1. Thus the curve for m = 1 and n = 0 lies below

the one for m = 0 and n = 1.

0
0  

kz

m
,n

m=1 n=0

m=0 n=1

m=1 n=1
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Problem 7.8 (Bekefi & Barrett 5.7) – Resonance cavity

~We are given E = E0 sin(kxx) sin(kyy) sin(ωt)ẑ. Since the cavity is a conductor, the tangential

component of the electric field must vanish at the walls, i.e.

Ez(x = 0) = Ez(x = a) = Ez(y = 0) = Ez(y = a) = 0. Hence, kx = nπ/a, ky = mπ/a and kz = 0.

The z-component of the wave equation gives
∂2Ez ∂2Ez

+
∂x2 ∂y2

+
∂2Ez
∂z2

=
1

c2
∂2Ez
∂t2

k2x + k2
1

y =
c2
ω2 ⇒ ωm,n =

πc

a

√
n2 +m2,

where m and n are integers such that m ≥ 1 and n ≥ 1.

a) The first solution is n = m = 1. Then, ω1 = πc
√

2/a so λ1 =
√

2a.

b) n = 2 and m = 1 or n = 1 and m = 2. Then, ω2 = πc
√

5/a so λ2 = 2a/
√

5.

Problem 7.9 – Radiation pressure

In case of absoption, the radiation pressure is S/c, where S is the

magnitude of the Poynting vector (W/m2). In case of reflection, the

pressure is 2S/c. Thus, the force on the mirror is 2SA/c, where A is

the cross-sectional area of the laser beam, SA = 30 kW. Thus, the

force is 2(3× 103)/(3× 108) = 2× 10−4 N. From the figure, Newton’s

law gives
x

T sin θ ≈ mg 2
L
≈ × 10−4.

Hence, x = 2 mm.

x

mg

T

F=2x10 N-4
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