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Notes for Lecture #18: Interactions of Light with Nonconductors 

The boundary conditions for dielectrics are very different from those for ideal conductors. Electric 

fields and changing magnetic fields are possible inside dielectrics. Maxwell’s equations still apply 

provided we replace f0 with κef0, and µ0 with κmµ0, where κe is the dielectric constant, and κm is the 

magnetic permeability. Except in ferromagnetic materials, κm is always very close to 1.0. Where 
√

the speed of light in vacuum was c = 1/ f0µ0, these substitutions give a speed of propagation of 
√ 

v = c/ κeκm = c/n where n is the index of refraction characteristic of the dielectric (2:35). The 

dielectric constant is a strong function of frequency, which is the cause of dispersive materials. For 

light at 5 × 1014 Hz in water, κe ≈ 1.77, making n = 1.33; for glass typically n = 1.5. Both vary 

with frequency, and there are many types of glass with different indices. 

The boundary conditions for light passing from one di­

electric medium to another are expected to result in both 

a reflected and transmitted (refracted) beam. Assume 

that a boundary at z=0 which is horizontal (denoted the 

y direction) separates medium “1” above from medium 

“2” below, with indices of refraction of n1 and n2, re­

spectively. The normal to the boundary will be used as 

a reference from which to measure angles. The incident 

beam has wave vector kki, the reflected beam has kkr, and 

the transmitted beam (in medium “2”) has kkt (5:45). 

The angle of the incident beam from the normal is θ1 and that of the reflected beam θ3. Soon we 

will show that θ1 = θ3. The frequency is the same for all beams and ω = kv. Since v is the same 

for the incident and reflected beams in medium “1”, the magnitudes of kki and kkr are the same, 

whereas kkt in medium “2” will not be the same. However, ω = k1v1 = k2v2. Using the speeds 

in the two media, we can write ki(c/n1) = kt(c/n2) or ki/n1 = kt/n2. The incident reflected and 

transmitted waves are written using exponential notation, as: 

k k j(ωt−kki·kr) k k j(ωt−kkr ·kr) k k j(ωt−kkt ·kEi = E0i e Er = E0r e and Et = E0t e
r), respectively. 

At the interface, the incident and reflected waves must add up to match the refracted wave. 

Satisfying this requirement at all times forces the three frequencies to be the same. In addition, 

the three waves must be either in phase, or out of phase by 180◦ . For any given time the relative 

phase is determined by the geometric terms. At z = 0 we must have kki · kr = kkr · kr = kkt · kr (8:40). 



We can consider the plane in which all the vectors lie to be x = 0. Then at the point of intersection 

of the k vectors, kr = (0, y, 0), and the dot products can be explicitly done. The angles between 

the vectors are 90◦ (π/2) minus the angles to the normal, and cos (π/2 − θ) = − sin θ, so we get 

kiy sin θ = kry sin θ3 = kty sin θ2. Since magnitudes ki and kr are the same, the first two give 

θ1 = θ3. The first and last give kiy sin θ1 = kty sin θ2, and with ki/n1 = kt/n2, we can rearrange to 

get ki sin θ1 = kt sin θ2 = (n2/n1)ki sin θ2, i.e. n1 sin θ1 = n2 sin θ2. 

The first is the law of reflection that the angle from the normal is the same exiting as entering. 

The second, known as Snell’s Law, relates the angles from the normal with change in refractive 

index, i.e. propagation speed. Snell’s law can be obtained from only this consideration and applies 

to any waves when they go between media where the speeds differ. It is not directly a consequence 

of Maxwell’s equations. It holds, for example, for waves in water or sound waves, when they pass 

between media where the speeds differ. Willibord Snellius, after whom the law is named, was a 

Dutch mathematician who discovered this relationship empirically in 1621, before it was known 

that the speed of light is different in different media (10:10). 

As an example of Snell’s law, consider light going from air (n1 = 1 to a very good approximation) 

to water, n2 = 1.33. The equations relating the angles of incidence and refraction are not too 

exciting until an incidence angle of 90◦, i.e. basically parallel to the water surface. In this case, the 

angle inside the water is considerably less, θ2max = 48.7◦ . A more interesting case is that of going 

from water to air. In this case, n1 = 1.33 and n2 = 1. If θ1 > 48.7◦, then it is not possible to solve 

for the refracted angle since sin θ2 > 1. Nature resolves this problem by having no refracted light. 

This is total internal reflection with all of the incident light reflected at the angle θ1. The incident 

angle for this to happen (48.7◦ between water and air) is called the critical angle, denoted θcr. In 

the general case sin θcr = n2/n1. There is only a critical angle if n1 > n2, i.e. in going from an 

“optically dense” medium to an “optically less dense” medium (14:45). Lasers and a transparent 

water tank are used to demonstrate these phenomena. 

In fiber optics, total internal reflection is important since it allows transmission through glass 

fibers with no loss in intensity, even after many kilometers of fiber (and many internal reflections) 

(17:45). A demonstration is done with a cable consisting of 5000 optical fibers, each 1/20th of a 

mm in diameter. The cable can be bent and even knotted and the outgoing intensity does not 

change. The many fibers can directly transmit an image if the fibers come out at the far end in 

the same arrangement as they are at the input side (21:45). 
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Now consider the intensity of the three beams at a dielec­

tric interface. The procedure uses Maxwell’s equations 

and is similar to what was done for conductors. Again, 

the two media are separated by a horizontal boundary, 

with the upper one having an index of refraction n1, di­

electric constant κe1 magnetic permeability κm1 , and the 

lower one having n2, κe2 , κm2 . As before, we decompose 

the wave above the interface, Ek1, into tangential and 

normal components, E1tan and E1n . The refracted wave can be similarly decomposed into E2tan 

and E2n . As for conductors, the Maxwell’s equations with “divs” will lead to pillboxes and the 

ones with “curls” will lead to closed loops (24:50). Previously, Prof. Lewin showed two out of 

four, leaving two as an exercise. Now, he will do just one out of four, namely Faraday’s Law, , 
k ∂Bk k ∂φB-× Ek = − , or in integral form E · dkl = − , where the magnetic flux φB through

∂t ∂t 
closed loop 

any open surface is related to the integral of E around the attached closed loop. 

The chosen loop is a path perpendicular to the interface with total length dz in that direction, and 

length L parallel to the interface. Contributions from the ends will disappear when we take the 

limit dz → 0. Along the top we get a contribution of E1tan L but on the bottom the path takes us in 
∂φB

the opposite direction so that contribution is −E2tan L, giving E1tan L = − . However, L − E2tan ∂t 
as dz → 0, the area over which we integrate the (finite) B field goes to zero, and thus so does the 

flux and its time derivative. The final result and first boundary condition is E1tan = 0,− E2tan 

or simply E1tan = (29:00). This is not that different from the condition Etan = 0 for a E2tan 

conductor, since that is true both just above the surface and just below it. 

Derivation of the other three boundary conditions using Maxwell’s equations is not difficult and 

the details are left as an exercise. The normal component is related to surface charge in a way 

that superficially resembles that for conductors, but there is a huge difference since, in insulators, 

charges cannot move around. This boundary condition can be written κe1 E1n − κe2 E2n = ρ/f0. 

which is analogous to En = ρ/f0 for conductors. With electromagnetic waves, in the latter case 

the surface charge density will vary enormously but, in the case of insulators, there is no change in 

the surface charge density due to the wave: the surface charge is static. In many cases it would be 

zero. The final two boundary conditions are for magnetic fields and we have B1n = B2n (continuity 
B1tan B2tanof normal components) and = for tangential components (32:00).
κm1 κm2 
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Dielectrics (Ideal Insulators) Ideal Conductors
 

κe1 E1n − κe2 E2n = ρs/f0 En = ρs/f0 

Summary Table of Boundary Conditions = E2tan Etan = 0 E1tan 

B1n = B2n Bn = 0 

B1tan /κm1 = B2tan /κm2 |Btan| = µ0|Js| 

A more complicated topic is finding the intensities of transmitted and reflected light relative to the 

incident light. This leads to four equations which are known as Fresnel’s Equations. Two of the 

four will be derived, leaving the other two as an exercise. Consider the same transition as before 

from n1 to n2. The reflected angle from the normal is the same as the incident angle, denoted θ1. 

Transmitted radiation will exit at an angle θ2. As in all EM waves, the E vector in the incident 

radiation must be perpendicular to the direction of propagation, i.e. in a plane 

perpendicular to the blackboard (the blackboard con­

tains all of the k vectors). This means that the inci­

dent radiation can have its E field decomposed into parts 

which, while lying in this plane perpendicular to the in­

cident k vector, also lie perpendicular to the blackboard 

(Ei⊥ ) or parallel to it (Ei|| ). It does not matter what the 

plane of polarization is, it could even be time varying as 

in circularly polarized light (35:45). We will proceed in 

detail for the perpendicular component, predicting what 

part of it shows up in the reflected and in the transmitted beams. The parallel component is left 

as an exercise. The incident perpendicular E field component must have an associated B field 

vector, with Ek × Bk in the direction of propagation. That constrains Bk to be in the same plane 

perpendicular kki that Ek is in. Further, Faraday’s Law 

that in this case of Ei⊥ , the associated B must be paral­

lel to the blackboard, do to solve the Ei⊥ case, we have 

only an associated Bi|| . If the angle of incidence is θ1, we 

can decompose this Bi|| further into its parts parallel and 

perpendicular to the interface, respectively Bi|| cos θ1 and 

Bi|| sin θ1. This decomposition allows us to use the tan­

gential boundary conditions B1tan /κm1 = /κm2 . AB2tan 

similar thing is done for the E field boundary conditions. 

Now consider the reflected wave (39:00). An incoming Ei⊥ is expected to produce an outgoing Er⊥ , 

although this might not be true if the medium is nonlinear in some way. Recall that this wave is at 
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the same angle θ1 as the incident wave. The associated B component is in the plane of incidence 

(the blackboard) and is called here Br|| . The reflected B component can be decomposed and for 

the tangential boundary condition, we only need the part parallel to the interface, Br|| cos θ1. 

Now consider the second medium, where the angle from 

the normal is θ2. The transmitted wave arising from 

an incident perpendicular E field would be expected to 

have only a perpendicular component, Et⊥ . As before, 

the associated B must be in the plane of the blackboard, 

Bt⊥ , and the component needed to apply the tangential 

boundary condition is Bt⊥ cos θ2. In order to understand 

all of these vectors and components, watching this sec­

tion of the video is absolutely critical (42:00)! 

E⊥ E⊥
Recall that in dielectrics, the ratio of the magnitudes of E and B is |B||| = = n, applicable 

v c 
in either medium. When appling the tangential boundary condition, the incident and reflected 

E fields superpose. So, Ei⊥ + Er⊥ = Et⊥ . Similarly for B, but with the slight complication of 

the projection angle, the tangential boundary condition (using κm ≈ 1 for most dielectrics) gives 

Bi|| cos θ1 − Br|| cos θ1 = Bt|| cos θ2 (45:00). The ratios of E to B are used to eliminate B, giving 

Ei⊥ n1 cos θ1 − Er⊥ n1 cos θ1 = Et⊥ n2 cos θ2. These two equations for the E⊥ terms (using Snell’s 

Law to give the angles) have three unknowns, but only the ratios of the electric fields, (Et/Ei)⊥ 

and (Er/Ei)⊥ are meaningful. The solutions, with subscript 0 denoting the amplitude of E, and r 

and t as a shorthand for ratios of reflected and transmitted to incident (respectively) are (48:00): 

Fresnel equations: 

E0r|| n1 cos θ2 − n2 cos θ1 tan(θ1 − θ2) 
r|| = = = −

E0i|| n1 cos θ2 + n2 cos θ1 tan(θ1 + θ2) 

E0r⊥ n1 cos θ1 − n2 cos θ2 sin(θ1 − θ2) 
r⊥ = = = −

E0i⊥ n1 cos θ1 + n2 cos θ2 sin(θ1 + θ2) 

E0t|| 2n1 cos θ1 2 sin θ2 cos θ1 
t|| = = = 

E0i|| n1 cos θ2 + n2 cos θ1 sin(θ1 + θ2) cos(θ1 − θ2) 

E0t⊥ 2n1 cos θ1 2 sin θ2 cos θ1 
t⊥ = = = 

E0i⊥ n1 cos θ1 + n2 cos θ1 sin(θ1 + θ2) 

Starting off with the indices of refraction and the incident angle θ1, Snell’s Law gives θ2 and the 

Fresnel equations can be used to get the E field ratios for the two directions of polarization. (52:00) 

In the case that θ1 = θ2 = 0, the incident beam comes along the normal line, so this is called normal 
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incidence. In this case there is really no difference between parallel and perpendicular components, 
Er n1 − n2 Et 2n1

which become identical = and = . 
Ei n1 + n2 Ei n1 + n2 

As a practical example, consider a transition from air to glass so that n1 = 1.0 and n2 = 1.5, 

giving Er/Ei = −0.2. The minus sign means that a 180◦ phase change takes place. Furthermore, 

Er/Ei = +0.8 with the plus sign showing that there is no phase change. As for a string, the 

reflected wave can change phase but the transmitted one never can. A plot illustrates the four 

Fresnel equations for the case of air to glass. The ratios, in the range −1 to 1, are shown for angles 

of incidence from 0◦ (normal incidence) to 90◦ (called grazing incidence) (56:00). 

Light intensity can be found using the Poynting vector, which is proportional to E2/v. The incident /2 
and reflected waves are in the same medium so the v cancels out and 

Ir 

Ii 
=

Er 

Ei 
. For θ1 = 0◦ , 

this intensity ratio is 0.04, a number well known to astronomers. It means that when light strikes 

a glass surface (a lens, for example) at normal incidence, 4% is reflected. To conserve energy, the 

rest of the light must go through, i.e. It/Ii = 0.96. Finding this is left as an exercise, in which it 

is very important to take into account the velocity in medium 2. 

If one looks at the first equation, a strange thing occurs if θ1 + θ2 = 90◦ . The tangent of 90◦ 

being infinity, r|| → 0, and there is an incident angle for which none of the light is reflected. This 

condition does not apply to the perpendicular component, however: some of it is still reflected at 

this angle. However, since none of the parallel component is reflected, the reflected light is 100% 

polarized in the direction perpendicular to the plane of incidence. The unique angle at which this 

happens is called the Brewster angle, denoted here θBr (1:00:05). 

If θ1 + θ2 = 90◦, then cos θ1 = sin θ2. Snell’s Law gives n1 sin θ1 = n2 sin θ2 so n1 sin θ1 = n2 cos θ1, 

and therefore tan θ1 = tanBr = n2/n1. Going from air to glass of index 1.5, θBr = 56.3◦ . By 

Snell’s law, it can be found that θ2 = 33.7◦ (giving the expected sum of 90◦). At this angle r|| = 0, 

but it is necessary to use the Fresnel equations to find that r⊥ = −0.385, so about (0.385)2, or 

0.15, i.e. 15%, of perpendicularly polarized light is reflected. If unpolarized light comes in, which 

can be broken down as 50% parallel and 50% perpendicular, then 7.5% of it will be reflected with 

100% perpendicular polarization. There is also a Brewster angle for going from glass to air, 33.7◦ 

(1:05:15). Similarly, the parallel polarized light goes through while the perpendicular polarized 

light is partially reflected, but 100% polarized. If one increases the angle further in this case, the 

critical angle is reached at which there is total internal reflection. This is possible only in going 

from a denser to a less dense medium, such as in this case going from glass to air. 

The Fresnel equations are very powerful, allowing calculation of intensities as a function of the 

refractive indices and incident angle. If the light is polarized in some arbitrary manner, one 
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decomposes it into a parallel and perpendicular component with respect to the plane of incidence.
 

One “turns the crank” on these components and gets the reflection and transmission for each. This
 

can be done for any type of light, even if the polarization vector changes with time as in elliptically
 

is polarized. The degree of linear polarization can be defined as V
 =
 

or circularly polarized light. Recombining, one can calculate to what degree the processed light 
I|| − I⊥ 

eeeeI|| + I⊥ 

eeee which uses the
 

difference in intensities in the directions of polarization over their sum. If this ratio is zero, the 

light is totally unpolarized, and if it is one, it is 100% linearly polarized, and in between indicates 

partially polarized light. Rotating a linear polarizer would gives differences in intensity (1:08:10). 

What should be the direction of polarization for polarized sunglasses? One has to think about the 

reason one would want such sunglasses. If light reflects from a dielectric surface, such as water, 

it will be at least partially polarized perpendicular to the plane of reflection, i.e. horizontally for 

many surfaces. In that case a choice of vertical polarizer will greatly reduce this reflected (undesired 

glare) light. A demonstration uses a large sheet of polarizing material which is rotated in a beam 

of reflected light at near the Brewster angle. When the polarizer is horizontal, light passes through 

to light up Prof. Lewins face but when the sheet is vertical, it cuts out all of this light, and his 

face becomes darkened (1:12:15). Looking into the beam with a TV camera, when the sheet is 

horizontal, the glare from a picture covered with glass obscures the picture, while if it is vertical this 

glare component is removed and one can see the picture (which scatters light essentially diffusely 

and does not affect polarization). This is basically what polarizing sunglasses do, select vertically 

polarized light, which is not present in reflective glare. One can check this for oneself by using a 

polarizer to look at reflections from metal (which does not polarize) and contrasting with reflections 

from dielectric materials like plastic, varnished wood, or leather. 

The ultimate demonstration of the Brewster angle is to amplify the polarizing effect of reflection 

from glass (1:15:15). About 7.5% of unpolarized light is reflected at the Brewster angle, and 

that reflected light is 100% polarized perpendicular to the plane of incidence. In the demo, the 

plane of incidence is horizontal, so the reflected light is polarized vertically. Before this demo, 

however, think about what would happen if more panes of glass were put into the beam. The 

parallel component goes through the glass 100%: however, bear in mind that since only 15% of the 

perpendicular component is reflected, 85% goes through. There is still a significant perpendicular 

component left to reflect from another sheet of glass at the Brewster angle. 
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If enough sheets of glass were set up one after the other, 

basically all of the perpendicular polarized light would 

go out the side, and the transmitted beam would be 

100% parallel polarized (1:17:30). For the demo, a stack 

of several hundred glass plates is used. To the side we 

expect to see 100% vertically polarized light either from 

a single sheet of glass or from the stack. The single sheet will pass through light missing only 

7.5% of its original intensity and not very polarized. However, the stack will have, by multiple 

extractions of the vertically polarized light, allowed only the horizontally polarized light to pass 

and be essentially 100% polarized in that direction. 

The parallel plane in this demo is horizontal, and the degree of polarization in either the reflected 

or transmitted beams can be shown by rotating a polarizing sheet. A projector produces a strong 

round beam of white, unpolarized light. By entering at the Brewster angle of about 56◦, the light 

reflects a total of 112◦ and ends up on a screen a bit to the left of the glass plate. Reflection on the 

screen disrupts the polarization, so the large polarizer must be inserted into the beam to determine 

the polarization: observing the screen does not show it well. Far to the left, in the direct line of 

the beam, about 93% of the light goes through to make a large round spot, while about 7.5% was 

reflected into a small spot off to the side. 

Initially, a single pane of glass is set near but not at the Brewster angle. It is shown that the 

reflected light is highly, but not 100%, polarized, since some gets through for all angles of the 

polarizer. When the angle is closer to the Brewster angle, blocking vertical polarization removes 

100% of the reflected light. The transmitted light has only 15% of the vertically polarized light 

removed, so is not highly polarized (this is not clearly seen in the video) (1:20:00). 

The experiment is repeated with a stack of hundreds of panes of glass. The reflected spot at the 

side is seen to be 100% polarized (as indeed it was with one pane of glass). The transmitted beam 

is shown to also be 100% polarized (again not clearly seen in the video). The stack of glass plates 

at the Brewster angle converts unpolarized light into a reflected beam to the side, which is 100% 

polarized in the perpendicular direction, and a transmitted beam which is 100% polarized in the 

parallel direction. Physics would seem to make the impossible possible, and difficult things easy! 
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