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Problem 1: Two Identical Particles 

A system consists of two identical, non-interacting, spinless (no spin variables at all) particles. 
The system has only three single-particle states ψ1, ψ2, and ψ3 with energies t1 = 0 < t2 < t3 

respectively. 

a) List in a vertical column all the two-particle states available to the system, along 
with their energies, if the particles are Fermions. Use the occupation number notation 
(n1, n2, n3) to identify each state. Indicate which state is occupied at T = 0. 

b) Repeat a) for the case of Bose particles. 

c) Use the Canonical Ensemble to write the partition function for both Fermi and Bose 
cases. 

d) Using only the leading two terms in the partition function, find the temperature de­
pendence of the internal energy in each case. Contrast the behavior of the internal 
energy near T = 0 in the two cases. 

Problem 2: A Number of Two-State Particles 

Consider a collection of N identical, non-interacting, spinless Bose particles. There are only 
two single-particle energy eigenstates: ψ0 with energy t = 0 and ψ1 with energy t = Δ. 

a) How would you index the possible N -body energy eigenstates in the occupation number 
representation? What are their energies? How many N -body states are there in all? 

b) Find a closed form expression for the partition function Z(N, T ) using the Canonical 
Ensemble. 

c) What is the probability p(n) that n particles will be found in the excited state ψ1? 

d) Find the partition function Zd(N, T ) that would apply if the N particles were distin­
guishable but possessed the same single particle states as above. 
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Problem 3: Identical Particle Effects in Rotational Raman Scattering
 

Begin by re-reading Excited State Helium in the Notes on our website. This reminds 
you that when anti-symmetry is required for a two-body wavefunction it can be carried by 
either the spin or the spatial part of the wavefunction. Next, read Raman on our website. 
That discussion shows how this concept is applied to the rotational motion of homonuclear 
diatomic molecules. 

The chlorine atom exists stably as two different isotopes: 17 17
35Cl at 76% and 37Cl at 24%. In 

each case the nuclear spin is 3/2. 

35a) For a gas composed only of diatomic molecules of the lighter isotope, 3517Cl - 17Cl, find 
the ratio of the intensities of the two series of alternating lines in the rotational Raman 
spectrum. 

b) For rotational motion the Boltzmann factor decreases with angular momentum L as 
exp[−L(L + 1)ΘR/T and the degeneracy increases with angular momentum as 2L + 1. 
Near what value of L does the Raman spectrum reach its peak? 

c) The rotational temperature ΘR of N2 is 2.9 K. Does your result in b) agree with the 
nitrogen spectrum shown in the Raman notes? The rotational temperature for Cl2 is 
about 0.35 K. Find the approximate number of lines in the spectrum out to the point 
where the scattered intensity reaches its maximum value. 

d) Explain any qualitative changes that would occur in the spectrum if the chlorine ex­
periment were to be done with a gas of molecules composed of only different isotopes: 
35 37Cl - Cl.17 17

Problem 4: Langmuir Isotherm 

a) How many ways can one place N identical atoms on M ≥ N distinct sites, given that 
each site can hold no more than one atom? 

b) Find the Canonical partition function Z(T,N) if the atom has an energy −t0 when it 
is on a site. Note that since each of the N atoms in our system is always on some site, 
there is only one possible system energy with a massive degeneracy. 

c) Find the Helmholtz Free Energy of the system, F (T,N), and show that the chemical 
potential is given by   

M − N 
µ = −t0 − kBT ln

N
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d) Let f ≡ N/M be the probability that any given site is occupied. Assume the system 
we have been considering represents adsorption sites on the surface of some material 
in thermal equilibrium with a bulk 3 dimensional gas of Ngas atoms of the same type 
in a volume V . The atoms, once adsorbed, are not free to move laterally: they have 
no kinetic energy. Find an expression for f in terms of the number density in the gas, 
n ≡ Ngas/V , the thermal deBroglie wavelength λ(T ), and the binding energy t0. Show 
that f = 0 at all temperatures if Planck’s constant h were to be zero. 

e) Express your result in d) in terms of the pressure P in the gas. This result is known 
as the Langmuir Isotherm. Make a sketch of f verses P at constant T . 

Problem 5: Information Theory Approach to Statistical Mechanics 

Read section 15.1 in Blundell and Blundell on information and Shannon entropy. Note 
the difference between the information content of a given statement or message, and the 
average information content of similar material in some context, for example the material 
being sent across a communication channel. Electrical engineers are more often concerned 
with the latter than the former. Therefore the Shannon entropy SI of a signal weights the 
information content of each item by the probability that the item occurs in the signal.  

SI ≡ −kB Pi ln Pi 

i 

where ln Pi is the information in a given item and Pi is the probability that the item will 
occur. 

The information theory approach to statistical is based on two assumptions. 

Assumption 1 The physical thermodynamic entropy of a system has 
the same form as the Shannon entropy in information theory and can 
be written as  

SI = −kB pstate ln pstate 
states 

where pstate is the probability that a microscopic state of the system 
occurs and the sum is over all the states of the system. 

a) Show that this assumption gives the correct result for the Microcanonical Ensemble 
where  1 

= and Ω = (1)pstate Ω 
states 
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b) Show that this assumption gives the correct result for the Canonical Ensemble where
 

e −βEstate −βE= , Z = e state and F (T, V ) = −kB T ln Zpstate Z 
states 

Now we will show how to use the information theory approach to arrive at the microscopic 
probability densities. We will use the Grand Canonical Ensemble as our example. Once 
we understand this example, it would be straight forward to go back and derive the Micro-
canonical and Canonical ensembles as well. 

Assumption 2 The equilibrium probabilities are found by maximizing
 
SI while taking into account certain constraints imposed on the system.
 

Since we are dealing with the Grand Canonical Ensemble, where the number of particles N 
can vary and is therefore an active variable in the probability density we seek, let pstate 
be replaced by pN,ν where the subscript ν indicates all the other variables (these will be 
microscopic variables) that may come into the specification of the state of our system. 

The constraints we impose on the system will be normalization, the average energy (which 
¯we will take to be the internal energy U) and the average number of particles, N . Then, 

according to Assumption 2, we must maximize 

SI = −kB pN,ν ln pN,ν
 

N,ν
 

subject to the constraints 

pN,ν = 1 EN,ν pN,ν = U NpN,ν = N̄
N,ν N,ν N,ν 

c) Review the method of Lagrange multipliers in your favorite applied mathematics text 
or in Appendix C.13 of Blundell and Blundell. We have four functions of the many-
variable set {pN,ν }. We want to find the value of each of the pN,ν when S is maximized 

¯and the expressions for 1, U and N are satisfied. The theory of Lagrange multipliers 
tells us this will occur when the partial derivative of the expression 

SI + λ1(1) + λU U + λ ̄ N̄N 

with respect to each of the variables equals zero. Of course in this equation each of the 
¯three functions 1, U and N must be represented by the sum of terms to which they 

are equal. That will give the variables we seek in terms of the λs, which will have to 
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be determined by the nature of the system. Carry out this operation and show that 
the dependance of pN,ν on the microscopic variables must have the form 

ln pN,ν = λ1/kB − 1 + (λU /kB) EN,ν + (λN /kB̄) N 

d) All that remains is to find expressions for the three λs in terms of the thermodynamic 
variables of the system. To do that multiply the expression you found above by kB pN,ν 

and sum over N and ν. Compare the result with the thermodynamic expression for 
the grand potential Φ. 

¯Φ = U − TS − µN
 

You should end up with the desired result:
 

pN,ν = exp[(Nµ − EN,ν )/kBT ] /Z 

Problem 6: Maxwell Relations 

Express the following partial derivatives in terms of other partial derivatives that do not 
involve the chemical potential µ. 

∂S 
∂µ V,N 

∂µ 
∂V T,N 

∂µ 
∂P T,N 

∂µ 
∂T P,N 
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