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Solutions to Problem Set #10

Problem 1: Two Identical Particles

a)

Fermions: |1, 1, 0 > ε2 T = 0 state

|1, 0, 1 > ε3

|0, 1, 1 > ε2 + ε3

b)

Bosons: |2, 0, 0 > 0 T = 0 state

|1, 1, 0 > ε2

|1, 0, 1 > ε3

|0, 2, 0 > 2ε2

|0, 1, 1 > ε2 + ε3

|0, 0, 2 > 2ε3

c) Let β ≡ 1/kT .

ZF (T ) = e−ε2β + e−ε3β + e−(ε2+ε3)β

Z (T ) = 1 + e−ε2β + e−ε3β 2
B + e− ε2β + e−(ε2+ε3)β + e−2ε3β

d)
ZF (T ) ≈ e−ε2β + e−ε3β

1 ∂ZF
< E >F = −

ZF ∂β

ε β
2e
−ε2β + ε3e

−ε3 ε2 + ε e≈ 3
−(ε3−ε2)β

=
e−ε2β + e−ε3β 1 + e−(ε3−ε2)β[
ε + ε e−(ε3−ε2)β

2 3 1− e−(ε3−ε2)β

=
1− 2

(e−(ε

]
3

[
−ε2)β)

]
ε + (ε − ε )e−(ε3−ε2)β

2 2 3 ε3e
−2(ε3−ε2)β

=
1− e−2(ε3

−
−ε2)β

≈ ε2 + (ε3 − ε2)e−(ε3−ε2)β
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This result shows a finite < E > at T = 0 and energy gap behavior with ∆ = ε3 − ε2.

1 ∂Z
< E >B = − B

ZB ∂β

ε≈ 2e
−ε2β

1 + e−ε2β

≈ ε e−ε2β2

This result shows < E >= 0 at T = 0 and energy gap behavior with ∆ = ε2.

Problem 2: A Number of Two-State Particles

The two single-particle states available are indicated below.

ψ1 ε = ∆

ψ0 ε = 0

a) Use the number of particles in the upper single particle state as the index for the many-
particle states:

|n0, n1 >= |N − n1, n1 > and En1 = n1∆

n1 = 0, 1, 2, · · ·N ⇒ N + 1 many-particle states

b) Let β ≡ 1/kT .

N

Z(N, T ) =
∑ N

e−n1∆β = e−
n∆β 1

n1=0 n

∑
1=0

∞

( )
=

∑
n

∞
n

e−∆β 1

n =0

−
n1

∑
e−∆β 1

1 =N+1∑∞
( ) ( )

=
(
e−∆β

)n1 −
(
e−∆β

)N+1
∑∞ (

e−
m∆β

n1=0 m=0

1 e−(N+1)∆β

)
=

1− e−∆β
−

1− e−∆β

1− e−(N+1)∆β

=
1− e−∆β
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c)
1 n1∆/kT 1 e

p(n1) = e− =
− −∆/kT

e−n1∆/kT

Z 1− e−(N+1)∆/kT

d) If the particles are distinguishable, similar, and non-interacting, then

N
Z Z N
d(N, T ) = ( one particle) =

(
1 + e−∆/kT

)
Problem 3: Identical Particle Effects in Rotational Raman Scattering

a) Since the Cl nuclei have half-integer spin, I = 3/2, they are Fermions and their wave-
function must be anti-symmetric under interchange of the two particles. The two-particle
wavefunction consists of two factors, one representing the spatial motion (rotation) of the
particles and one representing their spins. The spatial wavefunctions are eigenfunctions of
the angular momentum with quantum numbers L and mL. The wavefunctions with even L
are symmetric; those with odd L are anti-symmetric. Thus the states of even L must be
paired with spin states that are anti-symmetric and those with odd L must be paired with
symmetric spin states. The nuclear spin states are formed by adding two angular momenta,
each of magnitude 3/2. The resulting total spin can have the values IT = 3, 2, 1 and 0.
The state with the highest magnitude of the total spin is always symmetric, and the sym-
metry alternates as the total magnitude is stepped down, by 1 each time. So there are a
total of 10 symmetric spin states ((2 · 3 + 1) + (2 · 1 + 1)), and 6 anti-symmetric spin states
((2 · 2 + 1) + (2 · 0 + 1)).

The rotational energy levels increase monotonically with L, so the spin states, and the
associated degeneracy, must alternate between the symmetric and anti-symmetric values.
For the spin degeneracies that would be 6, 10, 6, 10, · · · . Thus the ratio of the two separate
intensity envelopes is 6/10 = 3/5 = 0.60.

b) Treating L as a continuous variable gives the expression for the envelope of the series of
delta functions in the Raman spectrum. We find the spot where that envelope is a maximum.

d
(2L+ 1) exp[−L(L+ 1)ΘR/T ] = (2

dL
− (ΘR/T )(2L+ 1)2) exp[−L(L+ 1)ΘR/T ]

= 0

(2L+ 1)2 = 2(T/ΘR)

T
L ≈

√
2ΘR
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c) For N2

L ≈
√

300

2× 2.9
≈ 7

The N2 spectrum in the notes peaks near the 8th line, which arrises from transitions fr
the L = 7 level.

For N2

L ≈
√

300

2× 0.35
≈ 21

so one expects the rotational Raman spectrum to peak near the 22nd line.

d) Since the two nuclei are two different isotopes they are not identical particles. All
nuclear spin states are allowed with each of the rotational states. The spectrum will evo
smoothly with L. The intensities of the lines will not alternate.

Problem 4: Langmuir Isotherm

a) The number of ways one can place N identical atoms on M ≥ N distinct sites, given t
each site can hold no more than one atom is equal to the number of ways of choosing
objects from M when order does not count:

M !

(M −N)!N !

b)

Z =
∑ M !

exp[−E /kBT ] =
∑

gn exp[−En/kBT ] = exp[Nε0/kBT ]state (M N)!N !
states n

−

c)

F = −kBT lnZ

lnZ = Nε0/kBT +M lnM −M − (M −N) ln(M −N) + (M −N)−N lnN +N

µ =

(
∂F

∂N

)
T

= −kB 0 B

M
= −ε0 − kBT ln

−N
N

T [ε /k T + 1 + ln(M −N)− 1− 1− lnN + 1]

om

16
lve

hat
N

( )
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d) From the lecture we have the chemical potential of a classical non-interacting gas in 3
dimensions.

µ = k T lnnλ3(bulk B T )

In equilibrium the two chemical potentials must be equal.

µ = µsurface bulk

ε0

(
1

kBT ln
− f− −
f

)
= kBT lnnλ3(T )(

f
ln

1− f

)
= ε0/kBT + lnnλ3(T )(

1− f
)

T= λ3 ε(T ) e 0/kB n
f

ελ3(T ) e 0/kBT n
f =

1 + λ3 ε TT ) e 0/k( B n

λ(T ) ≡ h/
√

2πmkBT so if h = 0 then f = 0.

e) Use the ideal gas law P = (N/V )kBT = nkBT to change the variable representing the
bulk gas from number density n to pressure P .

αP
f =

1 + αP

where the parameter α depends on temperature through the expression

3 ε0/kBT ε /k Tα = λ (T )/k 3
BT e = h (2πm)−3/2(kBT )−5/2 e 0 B

( )
f

1

2 4 6 8 10 αP
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Problem 5: Information Theory Approach to Statistical Mechanics

a)
1

p = and Ω =state Ω
states

∑
(1)

1 1
SI = −kB

states

∑ (
Ω

)
ln

(
Ω

)

= kB

(
1

Ω

)
ln(Ω

states

∑
(1)

SI = kB ln Ω = Smicrocanonical

b)

e−βEstate
p = , Z = e−βEstate and F (T, V ) = kBT lnZstate Z

−
states

∑

SI = −kB
states

∑
p lnstate

(
e−βEstate

Z

)

= −kB
states

∑
p (state −βEstate − lnZ)

1
= < E > +kB lnZ

∑
pstateT

states︸ ︷︷
1

1
= (U + kBT lnZ)

T

︸

1 1
SI = (U

T
− F ) = (U

T
− (U − TS)) = Scanonical
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c)

∂ ∂¯[SI + λ1(1) + λUU + λN̄N ] =
∑

[−kB pN,ν ln pN,ν + λ1pN,ν + λUEN,νpN,ν +
∂ pN,ν ∂ pN,ν

N,ν

= −kB
(
pN,ν

+ ln pN,ν

)
+ λ1 + λUEN,ν + λ ¯

p NN ] = 0
N,ν

ln pN,ν = λ1/kB − 1 + (λU/kB)EN,ν + (λN̄/kB̄)N

d)

kB
∑

[pN,ν ln pN,ν ] =
∑

[(λ1 − kB)pN,ν + λUEN,νpN,ν + λN̄ NpN,ν ]
N,ν N,ν

− ¯SI = (λ1 − kB) + λUU + λN̄ N

We can solve the given expression for the grand potential for S and find

Φ U µ−S =
T
− ¯+ N
T T

If the information theory entropy is to equal the thermodynamic entropy then we must make
the following assignments.

Φ
(λ1 − kB) =

T

1
λU = −

T

µ
λN̄ =

T

Substituting these back into the expression we found for the probabilities we found in c)
gives

Φ EN
ln pN,ν =

kBT
− ,ν µN

+
kBT kBT

λN̄NpN,ν ]

pN,ν = exp[(µN − EN,ν)/kBT ] exp[Φ/kBT ]
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Recall that the grand partition function Z is related to the grand potential Φ by the relation

Φ(T, V, µ) = −kBT lnZ

Using this brings us to the final form for the probability density in the grand canonical
ensemble.

pN,ν = exp[(Nµ− EN,ν)/kBT ] /Z

Problem 6: Maxwell Relations

Begin with the internal energy U .

dU = TdS − PdV + µdN

Holding V constant and recognizing that the cross derivatives of T and µ must be equal
since U is a state function gives (

∂µ

∂S

)
=

V,N

(
∂T

∂N

)
S,V

Inverting the partial derivatives on both sides gives us(
∂S

∂µ

)
=

V,N

(
∂N

∂T

)
S,V

Now examine the Helmholtz free energy F ≡ U − TS.

dF = −SdT − PdV + µdN

Hold the temperature constant and equate the cross derivatives of µ and P .(
∂µ
) (

∂P
=

∂V T,N

−
∂N

)
T,V

Continuing alphabetically, let’s examine the Gibbs free energy G ≡ U − TS + PV .

dG = −SdT + V dP + µdN

Hold P fixed and equate the cross derivatives of µ and T(
∂µ ∂S

=
∂T P,N

−
∂N T,P

) ( )
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Finally examine the enthalpy H ≡ U + PV .

dH = TdS + V dP + µdN

Hold S constant and equate the cross derivatives of mu and V .(
∂µ

∂P

)
=

S,N

(
∂V

∂N

)
S,P
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