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Problem 1: Ripplons
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One could also proceed directly from U .
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d) There is no energy gap behavior because there is no energy gap. For any kBT there are
always oscillators with ~ω < kBT .

Problem 2: Two-Dimensional Metal
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f) Thermal agitation only disturbs a fraction kBT/εF of the total number of electrons, and
imparts to them an energy of the order of kBT . Thus the total increase in energy from the
T = 0 value is proportional to T 2 and the heat capacity will be linearly proportional to T .
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Problem 3: Donor Impurity States in a Semiconductor
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b) < n > is equal to 1/2 where ε = µ, so if the donors are only half occupied, and they are
located at ε = 0, then µ = 0. Since half of the donor electrons are now in the conduction
band, the last equation above becomes

ND/2 = α(T )e−∆/kBT

This could be solved numerically for T .
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c) When the energy is many times kBT below the chemical potential µ,

< n >→ 1− e(ε−µ)/kBT

Then remembering that ε = 0 at the position of the donors

N (
D = N µ)/kBT ∆/kBT µ/kBT

D(1− e − ) + α(T )e− e

N e(−µ)/kBT
D = α(T )e−∆/kBT eµ/kBT

ND/α(T ) = e−∆/kBT e2µ/kBT

kBT ln[ND/α(T )] = −∆ + 2µ

µ = ∆/2 + (kBT/2) ln[ND/α(T )]

Since α(T ) ∝ T 3/2 the temperature dependent term above is proportional to

T [ln(T−3/2) + ln(constant)] = −(3/2)T lnT + T ln(constant)

which goes to zero at T = 0. Thus εF = ∆/2
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d) 1
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When T → 0, exp[−∆/kBT ]→ 0 leaving (NC/ND)2 = 0, so in this limit NC = 0

When T → ∞ α(T ) grows without bound and the first term in the equation can be
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with the solution NC = ND.
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Problem 4: Spin Polarization

a) Recall that in zero field the density of states for spin-1 Fermions is
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c) Using cgs units
1

H0 = 4.22× 10−54 (N/V )2/3

µ0M

Using M = 9.11× 10−28g, µ 21 1 22
0 = −9.27× 10− ergs-gauss− , and n = 8.45× 10 cm−3 gives

H0 = 9.6× 108gauss = 9.6× 104Tesla.

The negative µ0 means that the electron spins are polarized anti-parallel to the direction of
~H.

d) For 3He, M = 5.01 × 10−24g, µ0 = 1.075 × 10−23ergs-gauss−1, and n = 1.64 × 1022cm−3.
So in this system

H 7 3
0 = 5.1× 10 gauss = 5.1× 10 Tesla.

Problem 5: T = 0 solubility of 3He in 4He

a) Recall that for non-interacting spin 1/2 Fermions in 3 dimensions with an effective mass
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This is close to the value indicated in the figure.

Problem 6: Melting Curve of 3He

a) The entropy of a Fermi gas at T = 0, the model for the liquid 3He, is zero.

b) The entropy of N distinguishable, stationary spin 1/2 particles in the absence of an
applied magnetic field is NkB ln 2

c) At T = 0 in the presence of a large ”effective magnetic field” each of the spins in the solid
will be oriented with its moment anti-parallel to the effective field. Thus the entropy of the
solid goes to NkB ln 1 = zero.

d) In region II the slope of the melting curve is −kB ln 2/v0. Yes, it is negative.

e) In region I the slope of the melting curve goes to zero.

f) When heat is added to the system, the entropy must go up. The only way for that to
happen is for some of the liquid to turn into solid, that is, to freeze. In this region on the
melting curve, when one heats the system it solidifies and when one cools it, it melts.
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