MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Physics Department

8.044 Statistical Physics I Spring Term 2013
Solutions to Problem Set #4

Problem 1: Heat Capacity at Constant Pressure in a Simple Fluid

Start with the first law of thermodynamics.
dQ = dU + PdV

The relation for Cp we are looking for involves (OU/J0T)p so it is natural to try to do our
expansion in terms of the variables T" and P. We expand both dU and dV in terms of dT’

and dP.
oU oU
dU = (a—T)PdTJr (8—P)TdP
oV oV
(2 aro (2L ap
v <6T)Pd *(aP)Td
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Since we need the derivative at constant P the second term in the above expression will drop
out.

dQ
dl'lp
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Problem 2: Heat Supplied to a Gas

To find Cp we proceed as follows. Rearrange the first law to isolate d@.
dQ = dU + PdV

Expand the differential of the energy in terms of d71" and dV.

ou ou
dU = (8_T)V dT' + <W)T av

Substitute into the expression for dQ).

o (39,7 (), 1)
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Form the derivative with respect to T' by dividing by dT" and specifying the path as one of

constant P. dQ 5U 50 av
bl R N sl P i
arly = (aT)ﬁ((aV)ﬁ )<6T>P
——

Cy

Now use the given information (OU/0V)r =0, PV = NET, and Cy = (5/2)Nk in the
equation above to find that
Cp = (7/2)NE.

a) It is easy to find the heat along the two rectangular paths by integration.

c b

Py V Va P

- Cy—~dP + Cp-2dV
p Nk v Nk

= (19/2)NkT;

d b
AQ(adb) = / CpdT + / Cy dT
a d

Vz P
2 Pl 2 ‘/2
= Cp—-dV + [ Cy~=>dP
v, Nk p Nk
— (17/2)NkTy

Before we compute the heat along the diagonal path, it is useful to find the difference in
internal energy between b and a. Since the internal energy is a state function, it does not
matter what path we use to find it. We already know the heat input AQ) along the path adb
and the work AW is easy to find.

Va
AW (adb) = /—P av = —/ P dV = —NET;
Then the path-independent result for AU can be computed along this particular path.

AU = AQ + AW = (17/2 — 2/2)NkTy = (15/2)NkT}

The work along the diagonal path ab can be calculated by integration using the V' dependence
of P: P=(P/W)V.

AW (ab) = —/adeV:—(Pl/X/l)/V2VdV

\%1

= —(1/2)(P/V)(Vy = Vi) = =(3/2)PiVi = —(3/2)NKT:
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Finally we can compute the heat supplied along the diagonal path.

AQ = AU — AW = 9NET,

b) Examine the constraint along the diagonal path ab.

AQ = dU+Pdv

oU U
_ (8_T>V T + ( (8_V>T+P> av
—— ——

Cy 0
o = 2 _cpyp
b= dT’ ab_ v dT lab
Along the path ab
Py NET 2 Vi
P=—V=— = V"= _—-NkT.
Vi V Py

So along ab we can construct an expression relating dV to d1' by taking the derivative of
this expression.

2VdV = %deT

1

L (V) _ Wik
or), P2V

Finally
Vi Nk P
Cop=Cy + 317 v =Cv+(1/2)Nk = 3Nk
1
~—

P /Vp

As a check we can integrate this heat capacity along the path.
b
AQ(ab) = / CloydT = 3NK(T, — T,) = ONKT,

This is identical to the result we found above in part a).

Comment: Cy = (5/2) Nk is an approximation to a diatomic gas where the rotational degrees
of freedom are contributing to Cy but the vibrational degrees of freedom are not (they are
frozen out; we will understand why later in the course). If we had used the monatomic result
Cy = (3/2)Nk we would have found Cp = (5/2)Nk, AQ(acb) = (13/2)NkT,, AQ(adb) =
(11/2)NkTy, AU = (9/2)NkTy, AQ(ab) = 6NET}, and Cy, = 2Nk.



Problem 3: Thermodynamics of a Curie Law Paramagnet

All the manipulations we perform here for a simple magnetic system mirror those we carried
out in lecture for a simple hydrostatic system.

a) Heat capacities for the generic magnet.

wo (%) (2
dQ = dU —dW =dU — HdM first law
= <g—g>M T’ + <(§—]\[{[>T — H) dM substitution
Cuy = Zi_CTQ v <g—g) y from line above
o - B ()G, )G,
e - ((38),5) (3,
(S_J\Z)T = % + H by rearrangement

Now substitute into the general expansion of dU to arrive at

Cy(T,M)—Cy(T, M)

dU(T, M) = Cy (T, M) dT + 57
(8_T)H

+ H(T,M)| dM




b) Now find the results specific to the Curie law paramagnet.

Cwm

du

U(T, M)

(),

ou
ar ),
Cyg—Cy

Cy(T, M)

ou
o (Gw),

oU oU
- (a—T)M T (a—M)T M
—— ——

Cy 0

/T VT dT' = (1/2)bT? + f(M)

f' (M) =0 (given) = f(M) = constant = U(T = 0)

0 by assumption
—_—
(1/2T°+  U(T =0)

O (el _ ol
or\rT ),  T?

given

expansion

integration

from eq. of state

from a)



c¢) Here we practice working with an alternative pair of independent variables.

ou ou
dU = <_> dH + (—> dM expansion
oH J , oM )
ou ou
dQQ = dU — HdM = (—) dH + ((—) — H) dM  first law and substitution
0H ) ,, oM )
Cy = ﬁ_g L <g—g) <g—§{> dividing the above by dT'
M M
aH) ~1 (%5) .
i = = — chain rule
(OT v (GD)u (5i)r Xr
1 M
Cy = _X_T (g%) (%_T> substitution
M H
(8_(]) _ _Cuxr rearrangement of above
M)y (5
Cy = ﬁ_g = ((%) — H) (86_]\7{) from @) expression
H H H
aU) Cu
- = + H rearrangement of above
(5M m (G0

Now substitute into the general expansion of dU(H, M) to arrive at

(57) (57)

oT ) H or ) H
Note that the coefficient of the dM term in the expansion of dU(H, M) found here is different
from the coefficient of the dM term in the expansion of dU (T, M) found in part a).

(H, M)

dU(H, M) = — dH + +H| dM




d) Now we use the equation of state associated with a Curie law paramagnet

oMY _ 0 (al) _
T OH ), 0H\T ),
oMy _ el
or ).,

T2

a
T

by eliminating T

2 H2
vy = 2

TWJFf(M)

integration
ou ba? H?
(Gwr), = 36+
H

Comparison with the coefficient of dM in the differential form dU(H, M) above shows that
f'(M) = 0 which, when integrated, gives f = constant. Thus we can write

2 H2
U(H, M) = 2

TW + constant

There is no reason to carry around a constant term in the internal energy which never
to zero.

responds to any change in the independent variables, so we are free to set the constant equal

ba? H?
U(H,M) =2

2 M?
By using the equation of state, M = aH/T, we see that this reduces to the same result
obtained in b), that is U = (b/2)T?.



e) We are looking for the adiabatic constraint on d1" and dM.

e

Cp dT

=

oT oM
Cm
oU
- <<W)T - H) dM
(&),
dM | ag=o0 Cu

(8—(]) dl’ + <( ou ) — H) dM =0 for an adiabatic path
M T

by rearrangement

This gives the slope of an adiabatic path for any magnetic system.

f) Next we specialize to the case of a Curie law paramagnet.

(),

dT
dM 1AQ=0
dT
(T - Tp)
(T - Tp)

0, Cy =0T
(O—H) B H B M
I T ab
1
—MdM
ab
L(MQ_MQ)
2ab 0
1 (M — M) (M + M)
2ab 0 0
T
TO__

Curie law paramagnet

using the general result from e)

after rearrangement

integration




g) An isothermal path in the H M plane is easy to picture from the given equation of state,
M = aH/T. It is a straight line going through the origin with slope (OM/0H )7 = a/T. This
is shown in the figure accompanying the statement of the problem. In part f) we found the
relation which must hold between d1" and dM along an adiabatic path: dT" = (1/ab)M dM.
In order to explore an adiabatic path in the H M plane we must express d1" in terms of dM
and dH.

aH

T = i equation of state
H
dl" = % dH — % dM differential of above

Substitute this general expression for d71" into the adiabatic path derivative and separate the
dH and dM terms.

a aH
(1., H (M2 T T M2
dH = (%M +M) dM—(%—l—E) dM_E<1+ﬁ) dM

This allows us to find the slope of an adiabatic line in the H M plane in terms of the quantity
a/T which is the slope of an isotherm.

dM _a 1 <a
dH lag=0 T 1+% T

Note that the slope of the adiabatic path is less than that of the isothermal path going
through the same point.

isotherm,
M slope = a/T

/. - adiabatic path,
7 slope < a/T




Problem 4: Classical Magnetic Moments

a)
< m; <
—uN < M < upN
—N(pH) < E < N(uH)

b) There are 2N microscopic variables necessary to specify the state of the system. Some
possibilities include the  and z component of each spin, the z component and the angle in
the x y plane for each spin, or the polar angles 6 and ¢ for each spin.

)

H S 1 (909 :
e _<8_M>N__k§(8_M>N using S = —kIn(2
1 2M M
— —_ —_ e — Q — -
o () 2= )
_ (Nt H .
= M(HT)= ( 3% ) T the Curie law result

d) The expression found in c) allows M to grow without bound as 7" — 0. But |M]| is
bounded by pu/N. Thus the expression can only be trusted as an approximation when

M(H,T) << pN
Np?
kT

<< uN
= kT >> (1/3)uH

This result says that the “thermal energy”, kT, must be much greater than the maximum
energy allowable for a single spin.

e) To find € reduce N by 1 and reduce M by m.

(M —m)?

S T ET
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(M —m)*
Qi X [‘(2/3)(%1)%}

p(m) = ==
Q 2u)N 2
(20) exp [_(2/§4)_Nu2]
1 ep{ M2—2Mm+m2] p{ M? ]
= — exp|— XP |
24 (2/3)(N — 1)p? (2/3)Np?
- 1 o 3ImM
o~ o Xp N2
——

small since M<<unN

L 1+(3M) —u<m<
21 N;ﬂm p=m=H

Q

p(m)

Now check the normalization.

p b b3\
p(m)dm = / —dm+/ ——mdm
/_ 2 2N

s

= 1+0=1

This tells us that the total magnetization M is N times the average moment of an individual
dipole, the result that one would expect on physical grounds.
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Problem 5: A Strange Chain
a) The number of ways of choosing n, elements from a total of N is N!/(N — ny)Iny!. It
follows that

N!

Q<N’ n+) - (N—n+)'n+‘

S(N,ny) = klnQ

~ K{NInN—(N—-ny)In(N —ny)—nilnng —N+ (N —ny) +ny}

-~
=0

= K{NInN—-(N—-ny)In(N —n,)—nylnn,}

b)
o (%
T L)y
_ _ 055 ony
N 87’L+ oL
<~
1/21
k[N —ny n
= _E{N—mr +ln(N—n+)—E—lnn+}
2lF N —ny
——— = In
kT ny
kT N —ny
F(N,T,ny) = —gln< o )
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¢) Now rearrange the last result, take the exponential of both sides and solve for n.

N—n+

exp|-2lF /KT = -
+

1
N
1 + exp[—2lF /kT]

ny =

Next, use the expression for n, to find L.

L = l(2n+—N):Nl< 2 1+6Xpﬂ)

Trop] 1+ ex]
1 — exp|—2IF /kT]
1+ exp|—20F JKT]

l exp[lF/kT]| — exp|—IF /KT
exp[lF /KT + exp[—IF /kT]

— Nltanh(IF/kT)

For high temperatures, where k7" >> [F, tanhx — x for small x, so

NI?
L~ |— .
(3r)*

The fact that the length L is proportional to the tension F shows that Hooke’s law applies
to this system, at least for high temperatures.

d)
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Problem 6: Classical Harmonic Oscillators
a) In x space
N
E = Z xf
i=1

is a sphere in 2N dimensions with radius V' E. Its volume is 7V EY /N!. The corresponding
volume in pq space is

O(E,N) = 7T—(\/%)N< 2 ) BN

mw?

S(E,N)=kInQ(E,N)=kln { (2—”>N %EN}

w

= L =NkT Cny = Nk
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d) Let € be the volume in a phase space for N — 1 oscillators of total energy £ — e where
e = (1/2m)p? + (mw?/2)q?. Since the oscillators are all similar, < ¢ >= E/N = kT.

ppi,qi) = Q/Q

o= (&
 \w

_ v N (1_5>N

2 E — ¢ E
—_——
~<e>—1  mexp|—e/<e>]
1
Ppoa) = oy <o oPlme/ <)
_ 1 2 (12 2
= (ZW/w)kTeXp[ p; /2mkT] exp|—(mw?/2kT)q;]
1 2 ) 2 2
= exp|—p: /2mkT expl—q: /2(KT /mw
o PP/ ] ( ) p[—q; /2(kT/mw")]

= p(p;) X p(¢;) = p; and ¢; are S.I.

Pi o contour of constant

&/ q;
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