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Solutions to Problem Set #4

Problem 1: Heat Capacity at Constant Pressure in a Simple Fluid

Start with the first law of thermodynamics.

d/Q = dU + P dV

The relation for CP we are looking for involves (∂U/∂T )P so it is natural to try to do our
expansion in terms of the variables T and P . We expand both dU and dV in terms of dT
and dP .

dU =

(
∂U

∂T

)
dT +

P

(
∂U

dP
∂P

)
T

dV =

(
∂V

∂T

)
dT +

P

(
∂V

∂P

)
dP

T

∂U ∂V ∂U ∂V
d/Q = + P dT + + P dP

∂T P ∂T P ∂P T ∂P T

Since we need the deriv

((
ativ

)
e at constan

(
t

)
P

)
the second

((
term

)
in the

(
above

)
expression

)
will drop

out.

d/Q
CP ≡

dT

∣∣∣
P

=

(
∂U

∂T

)
+ P

P

(
∂V

∂T

)
P

=

(
∂U

∂T

)
+ αV P

P

Problem 2: Heat Supplied to a Gas

To find CP we proceed as follows. Rearrange the first law to isolate d/Q.

d/Q = dU + P dV

Expand the differential of the energy in terms of dT and dV .(
∂U
) (

∂U
dU = dT +

∂T V ∂V

)
dV

T

Substitute into the expression for d/Q.(
∂U ∂

d/Q =
∂T

)
dT +

V

((
U

∂V

)
+ P

T

)
dV
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Form the derivative with respect to T by dividing by dT and specifying the path as one of
constant P .

d/Q ∣∣∣ ∂U ∂U ∂V≡ CP = + +
dT P

(
P︸ ∂T

)
V

((
∂V

)
T

)(
∂T

)
P

CV

Now use the given information (∂U/∂

︷︷
V )T

︸
=0, PV = NkT , and CV = (5/2)Nk in the

equation above to find that
CP = (7/2)Nk.

a) It is easy to find the heat along the two rectangular paths by integration.

c b

∆Q(acb) =

∫
CV dT +

a

∫
CP dT

c

=

∫ P2 V1 2
CV +

P1
Nk

∫ V2 P
dP CP dV

V1 Nk

= (19/2)NkT1

∆Q(adb) =

∫ d

CP dT +

∫ b

CV dT
a d

=

∫ V2 P1
CP dV +

V1 Nk

∫ P2 V2
CV dP

P1
Nk

= (17/2)NkT1

Before we compute the heat along the diagonal path, it is useful to find the difference in
internal energy between b and a. Since the internal energy is a state function, it does not
matter what path we use to find it. We already know the heat input ∆Q along the path adb
and the work ∆W is easy to find.

V

∆W (adb) =

∫
−P dV = −

∫
d

P1 dV =
Va

−NkT1

Then the path-independent result for ∆U can be computed along this particular path.

∆U = ∆Q+ ∆W = (17/2− 2/2)NkT1 = (15/2)NkT1

The work along the diagonal path ab can be calculated by integration using the V dependence
of P : P = (P1/V1)V .

b

∆W (ab) = −
∫

P dV = −(P1/V1)
a

∫ V2

V dV
V1

= −(1/2)(P /V )(V 2 − V 2
1 1 2 1 ) = −(3/2)P1V1 = −(3/2)NkT1
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Finally we can compute the heat supplied along the diagonal path.

∆Q = ∆U −∆W = 9NkT1

b) Examine the constraint along the diagonal path ab.

d/Q = dU + P dV(
∂U

=
∂T

)
dT +︸ ︷︷ V

C

((∂U
V

︸ ∂V

)
+P dV︸ ︷︷ T

0

)

d/Q
Cab

︸
≡

dT

∣∣ dV
= CV + P

ab dT

∣∣
ab

∣ ∣
Along the path ab

P1 NkT
P = V =

V1 V
⇒ V 2 V1

= NkT.
P1

So along ab we can construct an expression relating dV to dT by taking the derivative o
this expression.

V1
2V dV = Nk dT

P1(
∂V V⇒
∂T

)
1 Nk

=
ab P1 2V

Finally
V1 Nk P

Cab = CV + = CV + (1/2)Nk = 3Nk.
P1 2 V

P1/V1

As a check we can integrate this heat capacit

︸︷︷︸
y along the path.

f

b

∆Q(ab) =

∫
Cab dT = 3Nk(Tb − Ta) = 9NkT1

a

This is identical to the result we found above in part a).

Comment: CV = (5/2)Nk is an approximation to a diatomic gas where the rotational degrees
of freedom are contributing to CV but the vibrational degrees of freedom are not (they are
frozen out; we will understand why later in the course). If we had used the monatomic result
CV = (3/2)Nk we would have found CP = (5/2)Nk, ∆Q(acb) = (13/2)NkT1, ∆Q(adb) =
(11/2)NkT1, ∆U = (9/2)NkT1, ∆Q(ab) = 6NkT1, and Cab = 2Nk.
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Problem 3: Thermodynamics of a Curie Law Paramagnet

All the manipulations we perform here for a simple magnetic system mirror those we carried
out in lecture for a simple hydrostatic system.

a) Heat capacities for the generic magnet.

dU =

(
∂U

∂T

)
dT +

M

(
∂U

∂M

)
dM expansion

T

d/Q = dU − d/W = dU −H dM first law(
∂U

=
∂T

)
dT +

M

((
∂U

∂M

)
T

−H
)
dM substitution

d/Q
CM ≡

dT

∣∣∣ =
M

(
∂U

∂T

)
from line above

M

d/Q ∣∣ (∣ ∂U
CH ≡ =

dT H ∂T

)
+

M

((
∂U ∂M

H from d/Q
∂M

)
T

−
)(

∂T

)
(( H

∂U
CH − CM =

∂M

)
T

−H
)(

∂M

∂T

)
( H

∂U

∂M

)
CH

=
− CM

T

( +H by rearrangement
∂M
∂T

No

)
H

w substitute into the general expansion of dU to arrive at

CH(T,M) CM(T,M)
dU(T,M) = CM(T,M) dT +

[ (
∂M

−

∂T

) +H(T,M)
H

]
dM

4



b) Now find the results specific to the Curie law paramagnet.

CM = bT,

(
∂U

∂M

)
= 0 given( ) (T

∂U ∂U
dU = dT + dM expansion︸ ∂T︷︷ M︸ ︸ ∂M

)
T

CM 0

U(T,M) =

∫ T

bT ′ dT ′ = (1/2)

︷︷
bT 2

︸
+ f(M) integration( 0

∂U
)

= f ′(M) = 0 (given) T
∂

⇒ f(M) = constant = U( = 0)
M T

0 by assumption

U(T ) = (1/2)bT 2 +
︷
U(T
︸︸

= 0)
︷

(
∂M

∂T

)
∂

=
H ∂T

(
aH

T

)
aH

=
H

− from eq. of state
T 2

aH aH2 M2

CH − CM = (0−H)(− ) = = from a)
T 2 T 2 a

M2

CH(T,M) = bT +
a
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c) Here we practice working with an alternative pair of independent variables.(
∂U ∂

dU =
∂H

)
dH +

M

(
U

∂M

)
dM expansion

H

∂U ∂U
d/Q = dU −H dM =

(
∂H

)
dH +

M

((
∂M

)
H dM first law and substitution( ) ( H

−
)

d/Q ∣∣∣ ∂U ∂H
CM ≡ =

)
dividing the above by dT

dT M ∂H M ∂T M

(
∂H

∂T

)
=

M

(
∂M
)(

∂T
∂M

)−1

H

( H
∂M
∂

) =
T

− ∂T chain rule
χTH

1
(
∂U
) (

∂M
CM = −

χT ∂H M ∂T

)
substitution

H

(
∂U

∂H

)
C

=
M

−( M χ
∂M
∂T

)T rearrangement of above
H

d/Q U
CH ≡

∣∣∣ ∂ ∂M
= from

dT

(( )
H

H ∂M H

−
)(

d/Q expression
∂T

)
H

(
∂U

∂M

)
CH

=
H

( +H rearrangement of above
∂M
∂T H

Now substitute into

)
the general expansion of dU(H,M) to arrive at

CM(H,M) χT (H,M) CH(H,M)
dU(H,M) = − dH +

∂
H

[(
M
∂T

) +H dM
∂M
∂T H

]

Note that the coefficient of the dM term in the expansion of

(
dU(H

)
,M) found here is different

from the coefficient of the dM term in the expansion of dU(T,M) found in part a).
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d) Now we use the equation of state associated with a Curie law paramagnet.

χT ≡
(
∂M

∂H

)
∂

=
T ∂H

(
aH

T

)
a

=
T T(

∂M

∂T

)
aH

=
H

−
T 2

bT
dU(H,M)

(
bT a 2

+ aH
= − T

−aH
T 2

)
dH +

(
T 2

+H︸
bT

︷︷
2

︸ −aH
T 2

)
dM

/H

︸
−bT
︷︷
2/M

︸
bT 2 bT 2

= dH
H

− dM
M

ba2H ba2H2

= dH − dM by eliminating T
M2 M3

ba2 H2

U(H,M) = + f(M) integration
2 M2(

∂U
)

ba2H2

= − + f ′(M)
∂M H M3

Comparison with the coefficient of dM in the differential form dU(H,M) above shows that
f ′(M) = 0 which, when integrated, gives f = constant. Thus we can write

ba2 H2

U(H,M) = + constant
2 M2

There is no reason to carry around a constant term in the internal energy which never
responds to any change in the independent variables, so we are free to set the constant equal
to zero.

ba2 H2

U(H,M) =
2 M2

By using the equation of state, M = aH/T , we see that this reduces to the same result
obtained in b), that is U = (b/2)T 2.
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e) We are looking for the adiabatic constraint on dT and dM .

∂U ∂U
d/Q =

( )
dT +

(( )
−H

)
dM = 0 for an adiabatic path

CM dT =

︸ ∂T︷︷ M

CM

︸ ∂M T

−
((

∂U

∂M

)
T

−H
)
dM by rearrangement

dT
((∣∣ ∂U

⇒ =
dM

∣
∆Q=0

− ∂M

)
T
−H

CM

)
This gives the slope of an adiabatic path for any magnetic system.

f) Next we specialize to the case of a Curie law paramagnet.(
∂U
)

= 0, CM = bT Curie law paramagnet
∂M T

dT

dM

∣∣∣ (0 M
=

−H) H
= = using the general result fro

∆Q=0
−

bT bT ab

1
dT = M dM after rearrangement

ab

1
(T − T0) = (M2

2ab
−M2

0 ) integration

1
(T T0) = (M M0)(M +M0)

m e)

−
2ab

−
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g) An isothermal path in the H M plane is easy to picture from the given equation of state,
M = aH/T . It is a straight line going through the origin with slope (∂M/∂H)T = a/T . This
is shown in the figure accompanying the statement of the problem. In part f) we found the
relation which must hold between dT and dM along an adiabatic path: dT = (1/ab)M dM .
In order to explore an adiabatic path in the H M plane we must express dT in terms of dM
and dH.

aH
T = equation of state

M

a aH
dT = dH

M
− dM differential of above
M2

Substitute this general expression for dT into the adiabatic path derivative and separate the
dH and dM terms.

a aH
(1/ab)M dM = dH

M
− dM
M2

dH =

(
1
M2 H

+

)
M2 T T M2

dM = +
a2b M

(
a2b

)
dM =

a

(
1 +

a abT

)
dM

This allows us to find the slope of an adiabatic line in the H M plane in terms of the quantity
a/T which is the slope of an isotherm.

dM ∣∣∣ a 1 a
= <

dH Q=0 T

(
1 + M2

∆
abT

)
T

Note that the slope of the adiabatic path is less than that of the isothermal path going
through the same point.
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Problem 4: Classical Magnetic Moments

a)

−µ ≤ mi ≤ µ

−µN ≤ M ≤ µN

−N(µH) ≤ E ≤ N(µH)

b) There are 2N microscopic variables necessary to specify the state of the system. Some
possibilities include the x and z component of each spin, the z component and the angle in
the x y plane for each spin, or the polar angles θ and φ for each spin.

c)

H
= −

(
∂S
)

1
= −k

(
∂Ω
)

using S = −k ln Ω
T ∂M N Ω ∂M

1
= −k

Ω

(
2M−

(2/3)µ2N

) (N
M

Ω = k
(1/3)Nµ2

)
Nµ2 H⇒ M(H,T ) =

( )
the Curie law result

3k T

d) The expression found in c) allows M to grow without bound as T → 0. But |M | is
bounded by µN . Thus the expression can only be trusted as an approximation when

M(H,T ) << µN

Nµ2

<< µN
3kT

⇒ kT >> (1/3)µH

This result says that the “thermal energy”, kT , must be much greater than the maximum
energy allowable for a single spin.

e) To find Ω′ reduce N by 1 and reduce M by m.[
(M −m)2

Ω′ = (2µ)N−1 exp −
(2/3)(N − 1)µ2

]
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f)

exp (M−m)2

Ω′ (2µ)N−1

p(m) = =
Ω (2µ)N

[
−

exp

]
[ (2/3)(N−1)µ2

− M2

(2/3)Nµ2

]

1
[

M2 − 2Mm+m2

= exp
2µ

− exp
(2/3)(N − 1)µ2

] [
M2

(2/3)Nµ2

]

1
[

3mM≈ exp
2µ Nµ2

]
small

︸
since
︷︷

M

︸
<<µN

1≈
(

3M
1 + ( )m

)
− µ ≤ m ≤ µ

2µ Nµ2

Now check the normalization.∫ µ M
p(m) dm =

µ

∫ µ 1
dm+ dm

µ 2µ

∫ µ 3
m

µ 2Nµ3
− − −

= 1 + 0 = 1

g)

< m > =

∫
p(m)mdm

=

∫ µ 1 µ 3M
mdm+

∫
m2 dm︸ 2−µ µ 3

=0

3M µ 1
=

3

︷︷
m

︸ µ−µ 2N

2Nµ

[
3 M

=
−µ3 N

This tells us that the total magnetization M is N times the average moment of an individual
dipole, the result that one would expect on physical grounds.
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Problem 5: A Strange Chain

a) The number of ways of choosing n+ elements from a total of N is N !/(N − n+)!n+!. It
follows that

N !
Ω(N, n+) =

(N − n+)!n+!

S(N, n+) = k ln Ω

≈ k{N lnN − (N − n+) ln(N − n+)− n+ lnn+−N + (N − n+) + n+}
=0

= k{N lnN − (N − n+) ln(N − n+)− n+ lnn+}

︸ ︷︷ ︸

b)

F
(
∂S

=
T

−
∂L

)
N,E

∂S ∂n
= − +

∂n+ ︸∂︷︷L
1/2l

k −

︸
{
N n+ n+

= − + ln(N
2l N − n+

− n+)−
n+

− lnn+

}
2lF N n− +

= ln

(
−

kT n+

)
kTF(N, T, n+) = − ln
2l

(
N − n+

n+

)
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c) Now rearrange the last result, take the exponential of both sides and solve for n+.

N n
exp[−2lF +

/kT ] =
−
n+

1
n+ = N

1 + exp[−2lF/kT ]

Next, use the expression for n+ to find L.

L = l(2n+ −N) = Nl

(
2 1 + exp[]

1 + exp[]
−

1 + exp[]

)
1 exp[ 2l /kT ]

= Nl
− − F

1 + exp[−2lF/kT ]

exp[l ]
= l

F/kT
N

− exp[−lF/kT ]

exp[lF/kT ] + exp[−lF/kT ]

= Nl tanh(lF/kT )

For high temperatures, where kT >> lF , tanh x→ x for small x, so

L ≈
(
Nl2

)
F .

kT

The fact that the length L is proportional to the tension F shows that Hooke’s law applie
to this system, at least for high temperatures.

d)

α ≡ L−1

(
∂L

∂T

)
F

1
=

L

(
1− (L)
T

)
1

= −
T

s
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Problem 6: Classical Harmonic Oscillators

a) In x space
2N

E =
∑

x2
i

i=1

is a sphere in 2N dimensions with radius
√
E. Its volume is πNEN/N !. The corresponding

volume in pq space is

N
πN 2

Ω(E,N) = (
√

2m )N

(√ )
EN

N ! mω2

=

(
2π

ω

)N
1
EN

N !

b)
N

2π 1
S(E,N) = k ln Ω(E,N) = k ln

{( )
EN

ω N !

}

c)

1
(
∂S
)

NE−1 N
= = k

{} k
=

T ∂E N {} E

⇒ E = NkT CN = Nk
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d) Let Ω′ be the volume in a phase space for N − 1 oscillators of total energy E − ε where
ε = (1/2m)p2

i + (mω2/2)q2
i . Since the oscillators are all similar, < ε >= E/N = kT .

p(pi, qi) = Ω′/Ω

N
2π

−1
1

Ω′ =

(
ω

)
(E 1

(N
− ε)N−

− 1)!

1
Ω′ 2

=
Ω

(
π

ω

)−
N !

(N − 1)!

( N
E − ε
E

)
1

E − ε

ω N ε N

= 1
2π E

−

≈<ε>

( )

p(pi, qi) =

︸ ︷︷− ε E
−
︸
1 ≈
︸

exp[−
︷︷
ε/<ε>

︸
]

1
exp[ ε/ < ε >]

(2π/ω) < ε >
−

1
= exp[−p2

i /2mkT ] exp[−(mω2/2kT )q2

(2π/ω)kT i ]

1 1
=

(
√ exp[−p2 exp[ 2

i /2mkT ]

)(√ −qi /2(kT/mω2)]
2πmkT 2π(kT/mω2)

)

= p(pi) p(qi) pi and qi are S.I.× ⇒
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