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Solutions to Problem Set #6

Problem 1: Sound Waves in a Solid

We need to find (07'/0P)ag—o - To do this we will use in sequence the first law, the energy
derivative given in the statement of the problem, and the chain rule for partial derivatives.
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Problem 2: Energy of a Film

a) The best approach to take here is to find a general expression for C'y and then show that
its derivative with respect to A is zero.
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We use a Maxwell relation to find (0S/0A)r . Note that S and S are different variables. I
would normally construct a magic square to find the equivalent derivatives, but for clarity I
will go through the more fundamental route here.
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dFF = dE—d(TS)=-SdI'+SdA
Since F is a state function, the cross derivatives must be equal.
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Substitute this result into the expression for the derivative of the heat capacity.
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This shows that the heat capacity at constant area does not depend on the area: Cy (T, A) =
Ca(T).



b) Now we find the exact differential for the energy and integrate up.
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Problem 3: Bose-Einstein Gas

a) In this problem, we just follow the directions.
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oS 08
= T — dT T — —Pld
(aT)V *( (aV)T )V
———
Cy
dF = dE—d(TS)=—SdT — PdV

o (9%) __ (9P
ov ), \oT),
ory - _ vz 4 gyre = (02
(8T)V = (5/2)aT?? +36T* = ( = :
S 5/2 3 5/2 3 -2
T\ | —P) = (5/2)aT®?+3bT° — aT®?* = bT° — ¢V
T

= (3/2)aT®? 4 2bT% — ¢V 2
Collecting this all together gives
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b) Use the fact that the energy is a state function which requires that the cross derivatives

must be equal.
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c¢) Use the results from b) to simplify the expression for dE in a).
dE = ((15/4)aT?>V + 66TV + fT'?)dT + ((3/2)aT>? + 2bT% — cV~2)dV
Integrate with respect to T first.
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d) Proceed just as we did above for FE.
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Integrate with respect to T first.
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Problem 4: Paramagnet

a) This is virtually identical in approach to problem 2.
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We will need H(T', M) for what follows.
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We use a Maxwell relation to find (0S/0M)r .
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dEl = TdS+ HdM

dFF = dE —d(TS)=-SdT + HdM

Since F' is a state function, the cross derivatives must be equal.
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Substitute this result into the expression for the derivative of the heat capacity.
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This shows that the heat capacity at constant magnetization does not depend on the mag-
netization: Cp (T, M) = Cp(T).
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Do the T integration first.
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