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Problem 1: Dust Grains in Space

a) ‘H is separable: the 6 variables are statistically independent.
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d) 3" law is violated: limp_,0 Sz = NkIn(0) = —oo. At very low temperatures one must

switch to a quantum treatment of the rotational motion. Such a treatment will lead to a
result consistent with the 37 law.

e) There is no energy gap behavior because there is no gap in the classically allowed rotational
energies. The quantum result, however, will show an energy gap.




Problem 2: Adsorption On a Stepped Surface

a) Z1 = ) states €XP(—€state/kT) = 0.01M + 0.14M exp(—A/kT) 4+ 0.85M exp(—1.5A/kT)
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c¢) Consider only the 2 lowest energy levels
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d) All states are equally likely = pg, .. = 0.85 .

e) M possible states for each atom = limy_,., S = Nkln M .

f) One expects energy gap behavior because there is an energy gap for the excitation of a
single atom.




Problem 3: Neutral Atom Trap

a) First write down the Hamiltonian for one atom.
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Then compute the partition function
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In order to emphasize the dependence on the important variables, this can be written in the

form Z; = AT%a~" where

2mmk
A= 87k3(7)3/2 a=9/2 andn=3.

b) Remember to include correct Boltzmann counting.
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Problem 4 Two-Dimensional Hy Gas
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no heat is exchanged with surroundings

process is said to be reversible
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Problem 5: Why Stars Shine

a) The electostatic potential outside the charged sphere depends only on r, the magnitude
of the distance from the center of the sphere.

o =9 >

The potential energy of another proton, considered to be a point particle, in this field is

62

V() = golr) = =

Then the minimum energy that the second proton must have to get within a radial distance
R of the first is
e? (4.8 x 10719)2
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b) In problem 4 of problem set 2 we found the following expression for the kinetic energy of
a particle in a three dimensional classical gas.
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Now find the probability p, that a given proton in the stellar plasma has an energy greater
than F iy
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This is going to turn out to be a very small number, probably too small to be represented
on a hand calculator. Therefore, let’s work toward getting its logarithm.
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8 % 1.381 x 10716 x 4 x 107\ /2
= ( . i XX ) = 9.18 x 107 cm/sec

o = 7(2R)*=7(2.4 x 107"%)*> = 1.81 x 107* cm?

p B 100
roton  1.67 x 1024

= 5.99 x 10% protons/cm”
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L = (no)'=922x10"% cm

Teollision = L/ <v >=1.01x 10 "sec

d) The fusion rate per proton is p; times the collision rate per proton. But in general a rate
equals the reciprocal of the characteristic time between events, so

1.01 x 107°
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The universe is about 15 billion years old, corresponding to a time
Tuniverse = 15 x 107 x 365 x 24 x 60 x 60 = 4.7 x 10'" sec

If the mass of the sun is 2 x 10** grams then the number of protons it contains is given by

2 x 1033
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Then for the entire sun, the total number of fusions per second is found as follows.

number of fusions per second = Npotons X fusion rate per proton

= N, protons/ Ttusion

= 1.2x10°7 /5 x 10" =2 x 107 sec™*
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