Refrigerator Run cycle backwards, extract heat at cold

end, dump it at hot end

HEAT EXTRACTED (COLD END) _ |Q¢o| Q¢

WORK DONE ON SUBSTANCE AW Q| — |Qc]

For the special case of a quasi-static Carnot cycle

_ e
Ty —Tpo
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e As with engine, can show Carnot cycle is optimum.

e Practical: increasingly difficult to approach T'= 0.

e Philosophical: T' = 0O is point at which no more

heat can be extracted.
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Heat Pump Run cycle backwards, but use the heat

dumped at hot end.

HEAT DUMPED (HOT END)  |Qp| QH|

WORK DONE ON SUBSTANCE AW Q| — Q]

For the special case of a quasi-static Carnot cycle

_ 1H
Ty —Tpo
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559 F subsurface temp. at 40° latitude
— T = 286K
70° F room temperature

— Ty = 294K

1QH| o294
AW — 8

37
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3rd |aw im S = Sg
T—0

At T' = O the entropy of a substance approaches a
constant value, independent of the other thermody-
namic variables.

e Originally a hypothesis
e Now seen as a result of quantum mechanics

Ground state degeneracy g (usually 1)
= S — kiIng (usually 0)
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(83

Consequences —) =0
o0x ) T7=0

Example: A hydrostatic system

1
a = (8‘/) :_1<8S> — 0 as 1T'— 0

V\oT)p V\OP/T1
VTa?

Cp—Cy = T .0 as T —0
Kr

T CV(T/) /
S(T)—S(O):/_O "= Cy(T) =0 as T —0
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Ensembles

e Microcanonical: E and N fixed
Starting point for all of statistical mechanics
Difficult to obtain results for specific systems

e Canonical: N fixed, T specified;: E varies
Workhorse of statistical mechanics

e Grand Canonical: T' and u specified; E and N vary
Used when the the particle number is not fixed
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If the density in phase space depends only on the energy at that
point,

pr({p, q}) = p(H{p, a}),

carrying out the indicated derivatives shows that

9p _

ot =0

This proves that p = p(H{p, g}) is a sufficient condition for an
equilibrium probability density in phase space.
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_ (V3 _ip 1/2 1 _e/2<e>
p(m)—(\/me )(\/Ne )\/3N<€>e

1 _
— o —€/2<e>

VaAtm < € >

Now use € =p2/2m and < e>=< p2 > /2m.

1

e~ P3/2<pz>
\/27T < p% >

p(pz) =

8.044 L7B17
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d) Let €2 be the volume in a phase space for N — 1 oscillators of total energy E — e where
e = (1/2m)p? + (mw?/2)q¢?. Since the oscillators are all similar, < ¢ >= E/N = kT.

p(pi,qi) = /Q

/ 2m M 1 N—-1
o= (U) RES
Q (2" Nl (E-e\V 1
Q  \w (N-1)!'\ E E—¢
w N eV
T or E—e (1_E>
r<e>—1 mexpl—e/<e>]
1
p(piyqi) = Wexp[—€/<€>]
1
= W exp|—pj /2mkT] exp[—(mw? /2kT)q;]
1 2 2 2
= | ——=exp|—p;/2mkT exp|—q; /2(kT /mw
Lol 1)( e el 204 )])

= p(pi) x p(¢;) = p; and ¢; are S.L.
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11S THE SUBSYSTEM OF INTEREST.
2, MUCH LARGER, IS THE REMAINDER OR THE "BATH".
ENERGY CAN FLOW BETWEEN 1 AND 2.

THE TOTAL, 1+2, IS ISOLATED AND REPRESENTED BY A
MICROCANONICAL ENSEMBLE.
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For the entire system (microcanonical) one has

volume of accessible phase space consistent with X

p(system in state X) — Q(E)

In particular, for our case

p({pl, ql}) — p(subsystem at {pl, ql}; remainder undetermined)

Q1({r1,91})$22(E — Eq)
Q(E)
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kinp({p1,q1}) = kInQy + kInQp(E — Eq) —kInQ(E)
kIn1=0 S~>(E — Ep) S(E)

0S2(E»)
~ OE>
evaluated at E, = E

So(E — E1) = So(E) —

1
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kInp({p1,q1}) = —Hl({?m}) FS2(E) — S(E)

\ . g
~"

The first term on the right depends on the specific

state of the subsystem.

The remaining terms on the right depend on the reser-

voir and the average properties of the subsystem.
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In all cases, including those where the system is too

small for thermodynamics to apply,

Hi({r1,91})
kT’

Hl({p1,Q1})]
kT

/exp[—Hl({]f; Q1})]{dp1,dq1}

]

p({r1,q1}) o< exp[—

exp[—
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If thermodynamics does apply, one can go further.
S(E) = S1(< By >) + S9(< Ey >)

Sy(E) — S(E) =
§2<E> — SQ<< Es >2 —Sl(< E >)
~ (832(E2>/8E2) zEl >=< FEj > /T

Hi({p1, ¢1}) L= by >

S
T T !

klnp({p1,q1}) = —

<< E > —T51>] eXp[_?'h({pla Q1}>]
kT b kT
= 17Zho‘

p({p1.¢1}) = pr[
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< Ey>-T5 =U,-1T\5 = F;

H({p,q})

p({p,a}) = (Zh") " expl——— 7=

Z is called the partition function.

2 V,N) = [ epl-P08 Dy, dgy e

kT
B (E-TS), F(T,V, N)
= exp|— T | = exp|— T )
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In the canonical ensemble, the partition function is

the source of thermodynamic information.

F(T,V,N) = —kTInZx(T,V)
F
oT' ) v,N
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