
Refrigerator Run cycle backwards, extract heat at cold
 

end, dump it at hot end 

HEAT EXTRACTED (COLD END) 

WORK DONE ON SUBSTANCE 
= 

|QC|
∆W 

= 
|QC|

|QH| − |QC| 

For the special case of a quasi-static Carnot cycle
 

TC
 =
 
TH − TC
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•	 As with engine, can show Carnot cycle is optimum.
 

•	 Practical: increasingly difficult to approach T = 0. 
  

•	 Philosophical: T = 0  is point at which no more 

heat can be extracted. 
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Heat Pump Run cycle backwards, but use the heat
 

dumped at hot end. 

HEAT DUMPED (HOT END) 

WORK DONE ON SUBSTANCE 
= 

|QH|
∆W 

= 
|QH|

|QH| − |QC| 

For the special case of a quasi-static Carnot cycle
 

TH
 =
 
TH − TC
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55o 

70o 

F subsurface temp. at 40o latitude 

→ TC = 286K 

F room temperature 

→ TH = 294K 

|QH|
∆W 

≤ ∼ 37 
294 

8 
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3rd law lim S = S0
 
T→0 

At T = 0  the entropy of a substance approaches a 

constant value, independent of the other thermody­

namic variables. 

• Originally a hypothesis 

• Now seen as a result of quantum mechanics 

Ground state degeneracy g (usually 1) 

⇒ S → k ln g (usually 0) 
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∂S
 

Consequences = 0  
∂x T=0 

Example: A hydrostatic system
 

1 
 
∂V 

 
1 

 
∂S 

 
α ≡ = − → 0 as  T → 0 

V ∂T P V ∂P T 

V Tα2 
CP − CV = KT 

→ 0 as  T → 0 

S(T )−S(0) =
 T 

T=0 

CV (T
') 

T ' dT ' ⇒ CV (T ) → 0 as  T → 0 
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Ensembles 

•	 Microcanonical: E and N fixed
 

Starting point for all of statistical mechanics
 

Difficult to obtain results for specific systems
 

•	 Canonical: N fixed, T specified; E varies
 

Workhorse of statistical mechanics
 

• Grand Canonical: T and µ specified; E and N vary
 

Used when the the particle number is not fixed
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If the density in phase space depends only on the energy at that 
point, 

ρ({p, q}) = ρ(H{p, q}), 

carrying out the indicated derivatives shows that 

∂ρ 
= 0. 

∂t 

This proves that ρ = ρ(H{p, q}) is a sufficient condition for an 
equilibrium probability density in phase space. 
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 √   √  
−1/2 −E/2<E>  p(px) =  √ 

3 
e N e1/2 √ 

1 
e 

4πm 3N < E >  

1 −E/2<E>= √ e 
4πm < E > 

Now use E = p2/2m and < E >=< p2 > /2m.x x 

1 2 2−p /2<p >xp(px) =   e x

2π < p2 >x
 

8.044 L7B17 

tom
Highlight



15
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d) Let Ω' be the volume in a phase space for N − 1 oscillators of total energy E − t where 
t = (1/2m)pi 

2 + (mω2/2)qi 
2 . Since the oscillators are all similar, < t >= E/N = kT . 

p(pi, qi) = Ω'/Ω 

Ω' 
 
2π 
 N−1 

1
(E − t)N−1 =

ω (N − 1)!   −1   N
Ω' 2π N ! E − t 1 

=
Ω ω (N − 1)! E E − t � �Nω N t

= 1 − 
2π E − t E' v- " ' v- " 

≈<E>−1 ≈exp[−E/<E>] 

1 
p(pi, qi) = exp[−t/ < t >]

(2π/ω) < t > 

2 2 = 
1 

exp[−pi /2mkT ] exp[−(mω2/2kT )qi ](2π/ω)kT 

= √ 
1 

exp[−pi 
2/2mkT ]  1

exp[−qi 
2/2(kT/mω2)] 

2πmkT 2π(kT/mω2) 

= p(pi) × p(qi) ⇒ pi and qi are S.I. 
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2 

1 

1 IS THE SUBSYSTEM OF INTEREST.
	

2, MUCH LARGER, IS THE REMAINDER OR THE "BATH".
	

ENERGY CAN FLOW BETWEEN 1 AND 2.
	

THE TOTAL, 1+2, IS ISOLATED AND REPRESENTED BY A
	
MICROCANONICAL ENSEMBLE.
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For the entire system (microcanonical) one has 

volume of accessible phase space consistent with X 
p(system in state X) =  

Ω(E) 

In particular, for our case 

p({p1, q1}) ≡ p(subsystem at {p1, q1}; remainder undetermined) 

Ω1({p1, q1})Ω2(E − E1) = 
Ω(E) 
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k ln p({p1, q1}) =  k lnΩ1 + k lnΩ2(E − E1)− k lnΩ(E)
  v   v   v   
k ln 1 = 0  S2(E − E1) S(E) 

∂S2(E2)S2(E − E1) ≈ S2(E) − E1
∂E2 v  

evaluated at E2 = E 
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H1({p1, q1})k ln p({p1, q1}) =  − +S2(E) − S(E)
 v  T
 v  

The first term on the right depends on the specific 

state of the subsystem. 

The remaining terms on the right depend on the reser­

voir and the average properties of the subsystem. 
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∫ 

In all cases, including those where the system is too 

small for thermodynamics to apply, 

H1({p1, q1}) p({p1, q1}) ∝ exp[− ]
kT 

H1({p1, q1})exp[− ]
kT= H1({p1, q1})exp[− ]{dp1, dq1}

kT 
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If thermodynamics does apply, one can go further. 

S(E) = S1(< E1 >) + S2(< E2 >) 

S2(E) − S(E) = 

S2(E) − S2(< E2 >) −S1(< E1 >),  k j 
≈ (∂S2(E2)/∂E2) < E1 >=< E1 > /T 

H1({p1, q1}) < E1 > 
k ln p({p1, q1}) = − + − S1

T T 

(< E1 > −TS1) H1({p1, q1}) 
p({p1, q1}) = exp[ ] exp[− ]

kT kT ,  k j 
≡ 1/Zhα 
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< E1 > −TS1 = U1 − T1S1 = F1 

H({p, q}) 
p({p, q}) = (Zhα)−1 exp[− ]

kT 

Z is called the partition function. 

H({p, q})
Z(T, V, N) = exp[− ]{dp, dq}/hα 

kT 

(E − TS) F (T, V, N) 
= exp[− ] = exp[− ]

kT kT 
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( ) 

( ) 

In the canonical ensemble, the partition function is 

the source of thermodynamic information. 

F (T,  V,  N) =  −kT lnZN(T, V  )
 

∂F 
S(T,  V,  N) =  − 

∂T V,N 

∂F 
P (T,  V,  N) =  − 

∂V T,N  
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