Wavefunctions, One Particle

. . o r and s are the variables.
Hamiltonian H(7,p, s)

Wavefunction ¢, (7, 5)

n is a state index and could

have several parts.

For an e™ in hydrogen ¢ = vy, |y, (7, 5)
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Wn (7, §) often factors into space and spin parts.

In (7, 8) = 22 (F) " (8)

2
Space(:l?) ox e M /QHn(\/aw) H.O. in 1 dimension

PP () o etk free particle in 3 dimensions
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RN (3)
Spin is an angular momentum so for a given value of
the magnitude S there are 25 + 1 values of mg.

For the case of § = 1/2 the eigenfunctions of the z
component of 5 are ¢;,,(5) and ¢_1,2(5)

~ h
Sz ¢1/2(8) §¢1/2(§)

. h
Sz ¢_1/2(5) 5 ¢_1/2(5)
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Sp'“( ) is not necessarily an eigenfunction of S,. For

example one might have

spln —») —

\/—¢1/2(S)

\/—Gb 1/2(5)

In some cases ¥, (7,5) may not factor into space and

spin parts. For example one may find

Yn(x,5) = f(x) ¢1/2(§) ~+ g(x) ¢—1/2(§)
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Many Distinguishable Particles, Same Potential,

No Interaction

Lump space and spin variables together

1,51 — 1 79,50 — 2 etc.
H(1,2,---N) =Ho(1) + Ho(2) 4+ - - - Ho(V)

In this expression the single particle Hamltonians all
have the same functional form but each has arguments

for a different particle.
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The same set of single particle energy eigenstates is
available to every particle, but each may be in a dif-
ferent one of them. The energy eigenfunctions of the
system can be represented as products of the single

particle energy eigenfunctions.

{n} = {n1,no,---ny}. There are N #s, but each n;

could have an infinite range.

H(1,2, - N) g0 (1,2,--- N) = Eqp by (1,2,--- N)
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Many Distinguishable Particles, Same Potential,

Pairwise Interaction

N
H(1,2,---N) =Y HoGi) + 5 Y. Hint(i,5)
i=1 i7]

The w{n}(l,Q,---N) are no longer energy eigenfunc-

tions; however, they could form a very useful basis set

for the expansion of the true energy eigenfunctions.
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Indistinguishable Particles

sz(ZJ)Ef(]z)
(pij)z =] = eigenvalues of Pb-j are +1,—1

It is possible to construct many-particle wavefunctions
which are symmetric or anti-symmetric under this in-
terchange of two particles.

Pijw(—l-) = p(+) ﬁij¢(—) = — (=)
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Identical = no physical operation distinguishes be-
tween particle ¢+ and particle 3. Mathematically, this

Py

means that for all physical operators O
(O, P;;] =0

= eigenfunctions of ® must also be eigenfunctions of

= energy eigenfunctions y¥r must be either ng'") or
(=)
Vv
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= states differing only by the interchange of the spa-

tial and spin coordinates of two particles are the same

state.

Relativistic quantum mechanics requires

iInteger spin «— Yg (+) [Bosons]

half-integer spin « %DE(_) [Fermions]
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Composite Particles

e Composite Fermions and Composite Bosons

e Count the number of sign changes as all the con-

stituents are interchanged

e Well defined statistics (F-D or B-E) as long as the

internal degrees of freedom are not excited
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T he constitutents of nuclei and atoms are e,p & n.
Each has § =1/2.

N even = even # of exchanges.

Y — (+)y = B-E

also N even = integer spin

N odd = odd # of exchanges.
Y — (=)= F-D
also N odd = half-integer spin
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Particle Nuclear Spin Electrons Statistics

H (HD) : 1 B-E
D (H?) 1 1 F-D
T (H3) ’ 1 B-E
He3 1 2 F-D
He? 0 p B-E
Li® 1 3 F-D
Li’ 3 3 B-E
Ho Oorl p. B-E
x5 integer ()x2 B-E
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Let a(7,5), B(7,S),--- be single particle wavefunctions.

A product many-particle wavefunction, «(1)8(2), does

not work.

Instead, use a sum of all possible permutations:
Wit = (a(1)8(2) + a(2)8(1))

VY = i e Ssermutations((1)5(2)7(3) )
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T he antisymmetric version results in a familiar form,

a determinant.

w5 = L(a(D)BR2) - a(2)8(1))

— states

a(l) B(1) ~(1) ---
a(2) B(2) ~(2) ---

Ha(3) B(3) ¥(3) .-

| particles

8.044 L17B15



o \Ifg\,_) = 0 if 2 states are the same since 2 columns
are equal: Pauli Principle.

° \lfg\,_> = 0 if 2 particles have the same 7 and s since
2 rows are equal.

e Specification: indicate which s.p. s are used.

{na,ng,ny,---} An oo # of entries, each ranging
from O to N but with Y,na = N.
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1,0,1,1,0,0,---) Fermi-Dirac
2,0,1,3,6,1,---) Bose-Einstein

S'eana = E Prime indicates S ng = N
87 87

Example Atomic configurations

(15)2(25)2(2P)° — Ne
(19)2(25)2(2P)%(35)! — Na
(15)1(29)1 — He*
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Statistical Mechanics Try Canonical Ensemble

Z(N,V,T) = Y o—E(state) /KT
states

— Y e BUnah) /AT
{na}

Z / (H e—eana/sz>
{na} .

This can not be carried out. One can not interchange
the Y- over occupation numbers and the [] over states
because the occupation numbers are not independent
(Xna = N).
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T=0 LOWEST POSSIBLE TOTAL ENERGY

BOSE: ALL N PARTICLES IN LOWEST € SINGLE PARTICLE STATE

NalE) NO(¢€)

€

FERMI: LOWEST N SINGLE PARTICLE STATES EACH USED ONCE
€ < €, €p CALLED THE FERMI ENERGY

nal(€) .

8.044 L17B19



MIT OpenCourseWare
http://ocw.mit.edu

8.044 Statistical Physics |
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.


http://ocw.mit.edu
http://ocw.mit.edu/terms



