
Wavefunctions, One Particle 

rr and rs are the variables. 
Hamiltonian Ĥ(r̂r, ̂rp, r̂s) 

n is a state index and could 
Wavefunction ψn(rr, rs) 

have several parts. 

For an e− in hydrogen ψ = ψn,l,ml,ms(rr, rs) 

Ĥ(r̂r, ̂rp, r̂s)ψn(rr, rs) =  En ψn(rr, rs) 
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ψn(rr,rs) often factors into space and spin parts. 

s) =  ψspace r)ψspinψn(rr,r J (r JJ (rs)n n

√ 
ψspace −αx2/2Hn((x) ∝ e α x) H.O. in 1 dimension n 

ψspace irk·rr(rr) ∝ e free particle in 3 dimensions n 
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ψspin
;; (ss)n

Spin is an angular momentum so for a given value of 

the magnitude S there are 2S + 1  values of mS. 

For the case of S = 1/2 the eigenfunctions of the z 

component of ss are φ1/2(ss) and φ−1/2(ss) 

Ŝz φ1/2(ss) =
h̄

φ1/2(ss)
2 

h̄ 
Ŝz φ−1/2(ss) =  − φ−1/2(ss)

2 
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ψspin
)) (ss) is  not necessarily an eigenfunction of Ŝz. For n

example one might have 

ψspin 1
)) (ss) =  √ φ1/2(ss) +  √1 φ−1/2(ss)n 2 2 

In some cases ψn(sr, ss) may not factor into space and 

spin parts. For example one may find 

ψn(x, ss) =  f (x)φ1/2(ss) +  g(x)φ−1/2(ss) 
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Many Distinguishable Particles, Same Potential, 

No Interaction 

Lump space and spin variables together 

rr1, rs1 → 1 rr2, rs2 → 2 etc. 

Ĥ(1,2, · · ·N) =  Ĥ0(1) + Ĥ0(2) + · · · Ĥ0(N)
 

In this expression the single particle Hamltonians all 

have the same functional form but each has arguments 

for a different particle. 
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The same set of single particle energy eigenstates is 

available to every particle, but each may be in a dif­

ferent one of them. The energy eigenfunctions of the 

system can be represented as products of the single 

particle energy eigenfunctions. 

ψ{n}(1,2, · · ·N) =  ψn1(1)ψn2(2) · · ·ψnN(N) 

{n} ≡ {n1, n2, · · ·nN}. There are N #s, but each ni 

could have an infinite range. 

Ĥ(1,2, · · ·N)ψ{n}(1,2, · · ·N) =  E{n} ψ{n}(1,2, · · ·N)
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∑ ∑ 

Many Distinguishable Particles, Same Potential, 

Pairwise Interaction 

N 
Ĥ(1, 2, · · ·N) =  Ĥ0(i) + 1 Ĥint(i, j)2 

i=1 i=� j 

The ψ{n}(1, 2, · · ·N) are no longer energy eigenfunc­

tions; however, they could form a very useful basis set 

for the expansion of the true energy eigenfunctions. 
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Indistinguishable Particles 

P̂ij f(· · · i · · · j · · ·) ≡ f(· · · j · · · i · · ·) 

(P̂ij)
2 = Î ⇒ eigenvalues of P̂ij are + 1, −1 

It is possible to construct many-particle wavefunctions 

which are symmetric or anti-symmetric under this in­

terchange of two particles. 

P̂ij ψ
(+) ψ(+) ˆ −ψ(−)= =Pij ψ

(−) 
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Identical ⇒ no physical operation distinguishes be­

tween particle i and particle j. Mathematically, this 

means that for all physical operators Ô

[Ô, P̂ij] = 0 
  

⇒ eigenfunctions of Ô must also be eigenfunctions of 

P̂ij. 

(+)⇒	 energy eigenfunctions ψE must be either ψE or 
(−)

ψ .E 
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⇒ states differing only by the interchange of the spa­

tial and spin coordinates of two particles are the same 

state. 

Relativistic quantum mechanics requires 

(+)integer spin ↔ ψE [Bosons] 

(−)half-integer spin ↔ ψE [Fermions]
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Composite Particles
 

•	 Composite Fermions and Composite Bosons 

•	 Count the number of sign changes as all the con­

stituents are interchanged 

•	 Well defined statistics (F-D or B-E) as long as the 

internal degrees of freedom are not excited 
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The constitutents of nuclei and atoms are e, p & n.
 

Each has S = 1/2. 

N even ⇒ even # of exchanges.
 

ψ → (+)ψ ⇒ B-E
 

also N even ⇒ integer spin
 

N odd ⇒ odd #  of exchanges.
 

ψ → (−)ψ ⇒ F-D
 

also N odd ⇒ half-integer spin
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Particle Nuclear Spin Electrons Statistics 

H (H1) 
D (H2) 
T (H3) 

1 
2 

1 
1 
2 

1 
1 
1 

B-E 
F-D 
B-E 

He3 

He4 

1 
2 

0 
2 
2 

F-D 
B-E 

Li6 

Li7 
1 
3 
2 

3 
3 

F-D 
B-E 

H2 
x2 

0 or 1  
integer 

2 
()×2 

B-E  
B-E 
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Let α(rr,rs), β(rr,rs), · · ·  be single particle wavefunctions.
 

A product many-particle wavefunction, α(1)β(2), does
 

not work.
 

Instead, use a sum of all possible permutations:
 

Ψ(+) 1= √ (α(1)β(2) + α(2)β(1))2 2

Ψ(+) √1 √ 1 ∑
= ∏ (α(1)β(2)γ(3) · · ·)N permutationsN ! α nα!
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∣∣∣∣∣∣∣∣∣∣∣ .. .. .. 

∣∣∣∣∣∣∣∣∣∣∣ 

The antisymmetric version results in a familiar form, 

a determinant. 

Ψ(−) 1= √ (α(1)β(2) − α(2)β(1))2 2

→ states 

α(1) β(1) γ(1) · · · 
  

Ψ(−) √1 α(2) β(2) γ(2) · · · 
  
= ↓ particlesN N ! α(3) β(3) γ(3) · · ·  

. . .
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•	 Ψ(−) = 0  if 2 states are the same since 2 columns N 

are equal: Pauli Principle. 

•	 Ψ(−) 
N = 0  if 2 particles have the same rr and rs since 

2 rows are equal. 

•	 Specification: indicate which s.p. ψs are used. 

{nα, nβ, nγ, · · ·}  An ∞ # of  entries, each ranging 

from 0 to N but with 
∑

α nα = N . 
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∑ ' ∑ 

|1, 0, 1, 1, 0, 0, · · ·)  Fermi-Dirac 

|2, 0, 1, 3, 6, 1, · · ·)  Bose-Einstein 

Eαnα = E Prime indicates nα = N
 
α α
 

Example Atomic configurations 

(1S)2(2S)2(2P )6 ↔ Ne
 

(1S)2(2S)2(2P )6(3S)1 ↔ Na
 

(1S)1(2S)1 ↔ He*
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∑ 

∑ 

∑ ∏ 
( ) 

(
∑ 

Statistical Mechanics Try Canonical Ensemble
 

−E(state)/kT Z(N, V, T ) =  e 
states 

I −E({nα})/kT = e 
{nα} 

= I e −Eαnα/kT 

α{nα} 

This can not be carried out. One can not interchange 

the 
∑ 

over occupation numbers and the 
∏ 

over states 

because the occupation numbers are not independent 

nα = N). 
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T=0  LOWEST POSSIBLE TOTAL ENERGY
	

BOSE: ALL N 	PARTICLES IN LOWEST ε SINGLE PARTICLE STATE 

nα(ε) 
Nδ(ε) 

ε 

FERMI: LOWEST N SINGLE PARTICLE STATES EACH USED ONCE
	
ε < εF, εF CALLED THE FERMI ENERGY 

nα(ε) 
1 

εF ε 
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