
Interesting Results from Statistical Mechanics 

• Reality of 1 in En = (n + 1)nω2 2

• Fluctuations in the thermodynamic variables
 

• Counter intuitive thermodynamic results 
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Reality of 1 in En = (n + 1)nω2 2

Difference in the zero temperature lattice spacing 

of 6Li and 7Li 

Begin with a review of phonons as elementary ex­

citations in solids 
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When dealing with motion on a lattice with spac­

ing a, only a finite set of wavevectors is necessary, 

those that fall in the interval 

π π 
− < kx ≤ 
a a 

Those outside this region give no new states.
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x

a = L/10

k = 4π/L
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a = L/10

k = 4π/L

k  = 4π/L + (1)(2π/a) = 24π/L 
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0 L

x

a = L/10

k = 4π/L

k  = 4π/L + (2)(2π/a) = 44π/L 
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The total number of distinct wavevectors is exactly 

equal to the number of lattice points, whether one 

is in one, two or three dimensions. In a solid the 

number of lattice points is equal to the number of 

unit cells 
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There are 3J phonon frequencies for each allowed

 

wavevector where J is the number of atoms in the

 

primitive unit cell. 
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The density of states is high where dω/dk = 0 
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Our system, the phonons, consists of 3JN har­

monic oscillators with a variety of different frequen­

cies. 

ωkk,j j = 1, 2 · · · J
 

It has been observed that all the frequencies re­

spond in the same way to a change in volume of 

the crystal. 

dω dV
 
= −γ
 

ω V
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Second Law: dS ≥ dQ/T → dQ ≤ T dS 

F = U − TS 

dF = dU − T dS − SdT 

dF = dQ − P dV − T dS − SdT 

dF ≤ T dS − P dV − T dS − SdT 

dF ≤ −SdT − P dV 

Spontaneous process at constant T and V
 

minimize F .
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φ(V)

V

F = φ(V ) + Fphonons(T, V ) = φ(V ) + Ffk,j 
fk,j 

Ff = −kBT ln Zfk,j k,j 

⎛ ⎞ � � ∂Zf∂φ � 1 ⎜ k,j ⎟ = kBT ⎝ ⎠ 
∂V T f Zf ∂V 

k,j k,j T 
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Z1 = exp[−(n + 1)nωβ]2n 

∂Z1  dω 
= −(n + 12)nβ exp[−(n + 2

1)nωβ]
∂V dVT n    

−γω/V 

γβ  
= (n + 2

1)nω exp[−(n + 12)nωβ]V n 
<E>Z1 

1 ∂Z1 γ 1 
= < E > 

Z1 ∂V T V kBT 
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φ(V)

V

T=0

T>0

⎞⎛ 
∂Zk
k,j1
∂φ
 γ
 
  
⎜⎝
 

⎟⎠
 =
kBT
 < Ek >

k,j
 

=
 
∂V
 Zk ∂V V


k,jT kk,j T kk,j
 

Uphonons
= γ 

V 
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You showed in PS9 that for low temperatures
 

Uphonons = Uz.p. + aT 4 

Uz.p. = N × 1n < ω > 2

Just as in a mechanical H.O. 

√ 
ωkk,j ∝ 1/ matoms for all modes 

Therefore 

Uz.p.(
6Li)/Uz.p.(

7Li) = 7/6 = 1.08
 

At T = 0 the lattice spacing of 6Li is observed to 

be about 0.07% larger than that for 7Li . 
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Fluctuations in the thermodynamic variables 

We have often argued that the fluctuations in the 

thermodynamic variables are very small. That is 

generally true, but we will see that in rare instances 

they can become so large that they dominate the 

behavior of the system. 

We will study the fluctuations in the number den­

sity, N/V . 
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⎛ ⎞ ∞  ∂Z e ⎝ ⎠ 
∂µ 

= βN exp[β(µN −H)]{dp, dq}
T,V N=1 ⎛ ⎞ ⎛ ⎞ ∞  1 ∂Z e exp[β(µN −H)]⎝ ⎠ ⎝= N ⎠ {dp, dq}

βZ ∂µ ZT,V N=1 ⎛ ⎞ ∞  1 ∂Z e ⎝ ⎠ = N p({p, q}, N){dp, dq}
βZ ∂µ T,V N=1 ⎛ ⎞ 
1 ∂ ln Z ⎝ ⎠ = < N > 
β ∂µ T,V 
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∂Z
∂µ

 ∞ =
T,V N

∑
βN

=1

∫
exp[β(µN −H)]{dp, dq}


2∂ Z
2∂µ

 ∞ 2

T,V N

∑ 2= β N exp[β(µN )] dp, dq
=1

∫
−H { }

1
2β


2∂ Z
2∂µ

 ∞
=

Z
  2 exp[β(µN

N
−H)]

dp, dq
T,V N=1

 ∑ ∫ 
Z

 { }

1


2 ∞∂ Z
2=

∑ ∫ N p( p,
2Z 2β ∂µ T,V N=1

{ q}, N){dp, dq}

1


2∂ 2=
2

Z
β Z 2∂µ

 < N >
T,V
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
2∂ lnZ


∂

 ∂ ln=
2

Z
∂µ ∂µ ∂µ

 ∂
=
∂µ


1 ∂Z


Z ∂µ


1 ∂

= −
Z2

Z ∂Z 1 2∂
+

Z
∂µ ∂µ Z 2∂µ

= −
 2∂ lnZ Z

∂µ


1 2 ∂

+
Z 2∂µ

= − 2 2 2 2β < N > +β < N >

2
2< N > − 2 ∂ (k ln

< N > = BT )
kBT


Z

2∂µ


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Recall that the grand potential Φ = −kBT lnZ, so

2 2


2∂ Φ
< N > − < N > = −kBT 

2∂µ


T,V

It can be shown that for hydrostatic systems
2∂ Φ

∂µ2


T,V

= −
< N >2

κT
V

So

2< N > − 2< N > 2< n >
=

2

− 2< n >

< N > < n >2
=
kBT

V
κT
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1
κT ≡ −

V

(
∂V

∂P

)
V

=
T

−(
∂P
∂V

)
T
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Watch the video 4C50.10 Critical Opalescence
Watch the video Critical point and critical opalescence

http://physicsdemos.site.wesleyan.edu/home/thermodynamics/4d/4c50-10-critical-opalescence/
http://www.youtube.com/watch?v=cSliO89x7UU


Counter intuitive thermodynamic results

Increasing the force/pressure causes the length/volume

to decrease?

Raising the temperature causes the length or vol-

ume to increase?

When liquids freeze their volume decreases?

A solid melts when heated and a liquid solidifies

when cooled?
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PLTS 2000



Where is the Cooling Power?
� Define:
� Enthalpy (pure 3He)= H3 < Enthalpy (dilute phase)=HD

� Circulation rate of 3He =
� What is the cooling power of an ideal dilution refrigerator?

� A.  B. H3 C.      HD

� D. (H3  - HD) E.    (HD  - H3)

n
•

n
•

n
•

n
•

n
•

n
•

.

282  wattsmQ nT
• •

=

Evaporation Vs. Dilution Power

Curves are for the same 
3He Circulation rate

QUIZ: What is the 
approximate
proportion between
HD and H3 at 0.35 K?

A. HD = H3
B. HD = 0.5 H3
C. HD = 2H3

Pomeranchuk Cooling

� Principle of Operation

� Technical Realization

� Cooling Power

Pomeranchuk Cooling-Principle of Operation

� dp/dT < 0 for T < 0.3K

� Entropy of solid 3He is higher
than that of liquid 3He

� Heat of solidification is negative

→ Solidifying by applying pressure adiabatically
leads to reduced temperature

Phase diagram of 3He

Pomeranchuk Cooling-PowerMIT OpenCourseWare
http://ocw.mit.edu
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