
Sums of Random Variables
 

nn 
Consider n RVs xi and let s ≡ xi. 

i=1 

If the RVs are statistically independent, then
 

n 
< s >	 = < xi > 

i 

n 
Var(s) = Var(xi) 

i 

8.044 L4B1
 



• The individual p(xi) could be quite different 

• Both continuous and discrete RVs could be present
 

• True for any n 

• Even if one RV dominates the sum 
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Results have a special meaning when
 

1) The means are finite (  = 0) 

2) The variances are finite ( = ∞) 

3) No subset dominates the sum 

4) n is large 

p(s)

∝ n

∝  n

s

n
1

∝
width
mean
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Given p(x, y), find p(s ≡ x + y)
 

A
 

dx

y = α−x

x+y = α

x

y
α

α

� ∞ � α−ζ
B Ps(α) = dζ dη px,y(ζ, η)−∞ −∞ 
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� ∞
C ps(α) = dζ px,y(ζ, α − ζ)

−∞ 

This is a general result; x and y need not be S.I.
 

Application to the Jointly Gaussian RVs in Section 

2 shows that p(s) is a Gaussian with zero mean and 

a Variance = 2σ2(1 + ρ). 
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In the special case that x and y are S.I.
 

ps(α) =
 ∞ 

dζ px(ζ) py(α−ζ) =
 ∞ 

dζI px(α−ζI) py(ζI)−∞ −∞ 

The mathematical operation is called “convolu­

tion”. 

 ∞ 
p ⊗ q ≡ p(z)q(x − z)dz = f(x). 

−∞ 
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Example
 

Given: 

1 
p(z) = (z/a)n exp(−z/a)
 

n!a
 

1
 
q(z) = (z/a)m exp(−z/a)
 

m!a 

p(z)

∝ zn

z

∝  (z /a)
n e-z/a

0 < z and n, m = 0, 1, 2, · · · 

Find: p ⊗ q 
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q(z)

z0

q(-z)

z0

q(x-z)=q(-(z-x))

z0 x

q(x-z)

z0 x

p(z)

finite product

8.044 L4B8
8.044 L4B8
 



� � � � 

� � 

� � 

 n m1 1 x z x − z 
p ⊗ q = e −z/a e −(x−z)/a dz


2n!m! a 0 a a 

n+m+1  1 1 1 x−x/a= e zn (x − z)m dz 
n!m! a a 0 

n+m+1  1 1 x 1−x/a= e ζn (1 − ζ)m dζ
n!m! a a  0 �  

n!m! 
(n+m+1)! 
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� �n+m+11 1 x −x/ap ⊗ q = e 
(n + m + 1)! a a 

a function of the same class 
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Example   Atomic Hydrogen Maser

flask

cavity

H*  beam

ν0

ν1

ν = 1.4....... GHz

ν1−ν0 about 10 KHz 

RF out

p( twall | n stays) = ?

8.044 L4B11
 



nn 
twall (given n stays) = ti 

i=1 

ti ≡ duration of ith stay on wall. Each stay is S.I. 

−t/τp(t |1) = (1/τ ) e

−t/τp(t |2) = p(t |1) ⊗ p(t |1) = (1/τ )(t/τ) e

−t/τp(t |3) = p(t |2) ⊗ p(t |1) = (1/2)(1/τ )(t/τ )2 e
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� �n−11 1 t −t/τp(t |n) = e 
(n − 1)! τ τ
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Facts about sums of RVs 

• Exact expressions for < s > and Var(s) if S.I.
 

• p(s) = p(x) ⊗ p(y) if S.I. 

• p(s) slightly more complicated if not S.I. 
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• ⊗ usually changes functional form 

• But not always 

• Fourier techniques are very useful 
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Very important special case: Central Limit Theorem
 

• RVs are S.I. 
• All have identical densities p(xi) 
• Var(x) is finite but < x > could be zero 
• n is large 

p(s)

∝ n

∝  n

s

Central Limit Theorem:

     p(s) is Gaussian
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If x is continuous
 

√ 
1 −(s−<s>)2/2σ2 

p(s) = e
2πσ2 

< s >= n < x >
 

σ2 = n σ2
 
x 
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If x is discrete in equal steps of Δx
 

 Δx −(s−<s>)2/2σ2 
p(s) = √ e δ(s − i Δx
 

2πσ2 v   )) 
i v   ) comb

envelope 

p(s)

s∆x
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Non-rigorous extensions of the Central Limit Theorem
 

•	 The Gaussian can be a good practical approxima­

tion for modest values of n. 

•	 The Central Limit Theorem may work even if the 

individual members of the sum are not identically 

distributed. 

•	 The requirement that the variables be statistically 

independent may even be waived in some cases, 

particularly when n is very large 
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