Sums of Random Variables

n
Consider n RVs z; and let s = ) «;.
i=1

If the RVs are statistically independent, then

<s> =) <x; >
1

Var(s) = Z Var(x;)
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e The individual p(x;) could be quite different

e Both continuous and discrete RVs could be present

e [rue for any n

e Even if one RV dominates the sum
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Results have a special meaning when

1) The means are finite (% 0)
2) The variances are finite (£ o0)

3) No subset dominates the sum

4) n is large

p(s) width 1

mean \/ﬁ

—> (—ocjﬁ

«— N 4>‘
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Given p(xz,y), find p(s = x4+ vy)

A xy X+y = O

N
B Ps(a) = /_OZO d¢ /_O;C dm Pw,y(Cﬂ?)
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o0

OOdC px,y(Qa — C)

This is a general result; x and y need not be S.I.

C ps() = |

Application to the Jointly Gaussian RVs in Section
2 shows that p(s) is a Gaussian with zero mean and

a Variance = 252(1 + p).
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In the special case that =z and y are S.I.

ps(e) = [ d¢pa(Qpy(a—Q) = [ d¢ pula—C) py(¢)

The mathematical operation is called *‘convolu-

tion" .

o0

p@q= [ p(x)a(z —2)dz = f(a).
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Example

Given: o(2)
p(z) = %(Z/a)” exp(—z/a) By °<<z/a>/ e
1(z) = m1!a<z/a)me><p(—z/a> (/ Z

O<zand n,m=20,1,2,---
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q(2)

q(x-2)=q(-(z-x))

q(-z)
0 Z
pP(z)
q(x-z)
0 X Z
LSS S S S S T

finite product
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P X®q

nlm! a2 / ( > <x_z> e/t 0 ds

1 1 /1\ntm+1
= (—) e T/a /aj 2" (x—2)"dz

n'm! a \a 0

1 1 (:p)n+m+1

nlml! a

e—x/a \/01 Cn (1 L C)md<;

~
nlm!

(n+m—+1)!

a
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—x/a

e

1 1 /1 n+m-+1
PR qg= ()

(n—l—m—I—l)!g a

a

a function of the same class
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Example Atomic Hydrogen Maser

T: RF out

4 beam V =14.... GHz

Vl—VO about 10 KHz

p(t,q | N stays) = ?

cavity
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n
twan (given n stays) = ) i,
i=1

t; = duration of ¢;;, stay on wall. Each stay is S.I.
p(t|1) = (1/7) e /T
p(t|2) = p(t |1) @ p(t |1) = (1/7)(t/7) e /T

p(t13) =pt|2) @p(t|1) = (1/2)(1/7)(¢/7)2 e t/T
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pt|n) = (n—ll)! % C)nl S

Tp(t]12)

0.05 |-

| | | | | t/fc
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Facts about sums of RVs

e Exact expressions for < s > and Var(s) if S.I.

e p(s) =p(x) ® p(y) if S.I.

e p(s) slightly more complicated if not S.I.

8.044 L4B14



e ® usually changes functional form

e But not always

e Fourier techniques are very useful
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Very important special case: Central Limit Theorem

e RVs are S.L.

e All have identical densities p(x;)

e Var(x) is finite but < x > could be zero
e n IS large

p(s) Central Limit Theorem:
p(s) is Gaussian

—> (—ocjﬁ

<« =N 4>‘
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If x is continuous

1 —(5—<8>)2/207
p(S)_\/2W02e< e

<s>=n< x>
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If x is discrete in equal steps of Ax

Az _(e— 2 /552 :
p(s) =Y g (5—<s>)%/20 0(s —iAx)
R A— - comb
envelope
p(s) Ay
\\
// A

N,

Al

AX ~>| |« S
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Non-rigorous extensions of the Central Limit T heorem

e [ he Gaussian can be a good practical approxima-

tion for modest values of n.

e [ he Central Limit Theorem may work even if the
individual members of the sum are not identically
distributed.

e [ he requirement that the variables be statistically
independent may even be waived in some cases,
particularly when n is very large
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