Some terms that must be understood

Microscopic Variable

Macroscopic Variable

8.044 L5B1

Extensive $(\propto N)$

V volume

A area

L length

 ${\cal P}$ polarization

M magnetization

.

U internal energy

Intensive $(\neq f(N))$

P pressure

 ${\cal S}$ surface tension

 ${\mathcal F}$ tension

 ${\cal E}$ electric field

H magnetic field

.

T temperature

Adiabatic Walls

Equilibrium

Steady State

Diathermic Walls

Complete Specification:

Independent and Dependent Variables

Equation of State

$$PV = NkT$$

$$V = V_0(1 + \alpha T - \mathcal{K}_T P)$$

$$M = cH/(T - T_0) \quad T > T_0$$

In Equilibrium with Each Other

OBSERVATIONAL FACTS

" Law 0.5?" Many macroscopic states of B can be in equilibrium with a given state of A

THEOREM A "predictor" of equilibrium h(X, Y, ...) exists

- only in equilibrium
- state variable
- many states, same h
- different systems,
 different functional forms
- value the same if systems in equilibrium

$$X_A$$
, Y_A , X_C , Y_C all free

$$[P_A, V_A, P_C, V_C]$$

$$X_{C} = f_{1}(Y_{C}, X_{A}, Y_{A})$$

 $F_{1}(X_{C}, Y_{C}, X_{A}, Y_{A}) = 0$

$$[P_{C} = P_{A} V_{A} / V_{C}]$$

 $[P_{C} V_{C} - P_{A} V_{A} = 0]$

$$X_B = g(Y_{B}, X_C, Y_C)$$

$$[P_B = P_C V_C / V_B]$$

$$F_2(X_C, Y_{C}, X_B, Y_B) = 0$$

$$[P_CV_C - P_BV_B = 0]$$

solve for X_C

$$X_C = f_2(Y_{C}, X_B, Y_B)$$

$$[P_C = P_B V_B / V_C]$$

same value as before

$$f_1(Y_{C_A}X_A, Y_A) = X_C = f_2(Y_{C_A}X_B, Y_B)$$

$$[P_A V_A / V_C = P_B V_B / V_C]$$

$$\Rightarrow$$
 $F_3(X_A, Y_A, X_B, Y_B) = 0$ 2

For this equilibrium condition

$$h(X_A, Y_A) = constant = h(X_B, Y_B)$$

$$[P_AV_A = P_BV_B]$$

Empirical Temperature: t

we could

possible alternative

• Define
$$t = c_g PV/N$$

$$t' \equiv c_g' (PV/N)^{\alpha}$$

- Use to find isotherms in other systems
- Then in a simple paramagnet $t = c_m (M/H)^{-1}$

$$t' = c_m' (M/H)^{-\alpha}$$

→ Many possible choices for t

$PV = Nkt \rightarrow t = PV/Nk$

$$t' = (PV/Nk)^2$$

$$t'' = \sqrt{PV/Nk}$$

Work

dW ≡ differential of work done <u>on</u> the system

= - (work done by the system)

Hydrostatic system

$$dW = -PdV$$

$$\angle dW = Fdx = (PA)(-dV/A) = -PdV$$

$$\not a W = \mathcal{F} dL$$

P pushes, \mathcal{F} pulls

$$\not a W = F dx = (\mathcal{F})(dL) = \mathcal{F} dL$$

Surface

$$gW = SdA$$

$$gW = Fdx = (SL)(dA/L) = SdA$$

Chemical Cell (battery)

Electric charges

Field in absence of matter as set up by external sources. Does not include energy stored in the field itself in the absence of the matter.

- All differentials are extensive
- Only -PdV has a negative sign
- Good only for <u>quasistatic processes</u>
- $\Delta W = \int_{a}^{b} dW$ depends on the path
 - ⇒W is not a state function

dW = YdX
depends on Y(X)

(a)
$$W_{1\to 2} = -P_1(V_2 - V_1) = P_1(V_1 - V_2)$$

(b)
$$W_{1\to 2} = -P_2(V_2 - V_1) = P_2(V_1 - V_2)$$

(c)
$$W_{1\to 2} = -\int_1^2 P(V) dV = -\int_1^2 \frac{NkT}{V} dV = -NkT \int_1^2 \frac{dV}{V}$$

$$= -NkT \ln \frac{V_2}{V_1} = NkT \ln \frac{V_1}{V_2} = P_1 V_1 \ln \frac{V_1}{V_2}$$

MATH

I) 3 variables, only 2 are independent

$$F(x, y, z) = 0$$

$$\Rightarrow x = x(y, z), \quad y = y(x, z), \quad z = z(x, y)$$

$$\Rightarrow \left(\frac{\partial x}{\partial y}\right)_z = \frac{1}{\left(\frac{\partial y}{\partial x}\right)_z} , \quad \left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x \left(\frac{\partial z}{\partial x}\right)_y = -1$$

Given some W=W(x,y,z) where only 2 of the 3 variables in the argument are independent,

then along a path where W is constrained to be constant

$$\left(\frac{\partial x}{\partial y}\right)_{W} \left(\frac{\partial y}{\partial z}\right)_{W} \left(\frac{\partial z}{\partial x}\right)_{W} = 1$$

then it follows that
$$\left(\frac{\partial x}{\partial y}\right)_w = \frac{\left(\frac{\partial x}{\partial z}\right)_w}{\left(\frac{\partial y}{\partial z}\right)_w}$$

II) State function of 2 independent variables

$$S = S(x, y)$$

$$dS = \underbrace{\left(\frac{\partial S}{\partial x}\right)_{y}}_{A(x,y)} dx + \underbrace{\left(\frac{\partial S}{\partial y}\right)_{x}}_{B(x,y)} dy$$

An exact differential

$$\left(\frac{\partial A}{\partial y}\right)_x = \frac{\partial^2 S}{\partial y \partial x} = \frac{\partial^2 S}{\partial x \partial y} = \left(\frac{\partial B}{\partial x}\right)_y$$

⇒ necessary condition, but it is also sufficient

Exact differential if and only if $\left(\frac{\partial A}{\partial y}\right)_x = \left(\frac{\partial B}{\partial x}\right)_y$

Then $\int_1^2 dS = S(x_2, y_2) - S(x_1, y_1)$ is independent of the path.

III) Integrating an exact differential

$$dS = A(x, y) dx + B(x, y) dy$$

1. Integrate a coefficient with respect to one variable

$$\left(\frac{\partial S}{\partial x}\right)_y = A(x,y)$$

$$S(x,y) = \underbrace{\int A(x,y) \, dx + f(y)}_{y \text{ fixed}}$$

2. Differentiate result with respect to other variable

$$\left(\frac{\partial S}{\partial y}\right)_x = \frac{\partial}{\partial y} \left[\int A(x, y) \, dx \right] + \frac{d f(y)}{dy} = B(x, y)$$

3. Integrate again to find f(y)

$$\frac{df(y)}{dy} = \left\{ B(x,y) - \frac{\partial}{\partial y} \int A(x,y) \, dx \right\}$$

$$f(y) = \int \{\cdots\} \, dy$$

<u>done</u>

MIT OpenCourseWare http://ocw.mit.edu

8.044 Statistical Physics I Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.