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Notes on the Microcanonical Ensemble

The object of this endeavor is to impose a simple probability density on the phase space,
classical or quantum, of the many particle system and to use it to obtain both microscopic
and macroscopic information about the system. The microscopic information includes the
probability densities for individual microscopic coordinates or states. The macroscopic in-
formation will consist of a statistical mechanical definition of the temperature, the second
law of thermodynamics and all the necessary equations of state.

1. The System

The system we will consider consists of N particles
in a volume V subject to enough mechanical and
electromagnetic constraints to specify the thermo-
dynamic state of the system when combined with
the additional constraint that the total energy of
the system is restricted to a very narrow range ∆
above a reference energy E.

E < energy ≤ E + ∆

The number of items in the list of fixed quantities,
including E, is the number of independent macro-
scopic variables. For simplicity we will carry along
only 3 in most of these notes: E,N and V .

2. The Probability Density

Here we choose the simplest of all possible forms (at least
density: a constant for all of the accessible states of the sy
those microscopic states of the system consistent with th
choice is known as the “postulate of equal a priori probabilit
basis of all of statistical mechanics.

Fixed:

E

V

N

~M or ~H

~P or ~H

· · ·

· · ·

conceptually) for the probability
stem. The “accessible” states are
e constraints (E, V,N, · · ·). This
ies”. It is in fact the fundamental
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Classical version:

p({p, q}) = 1/Ω E < H({p, q}) ≤ E + ∆

= 0 elsewhere

Ω ≡
∫

dp, dq = Ω(E, V,N)
accessible

{ }

Quantum version:

p(k) = 1/Ω E < 〈k|H|k〉 ≤ E + ∆

= 0 elsewhere

Ω ≡
k

∑
(1) = Ω(E, V,N)

, accessible

In the quantum case Ω is dimensionless. It is the total number of microscopic states accessible
to the system. Classically Ω is the accessible volume of phase space. It can be made
dimensionless by dividing by ~m where m is the number of canonically conjugate momentum-
coordinate pairs (p, q) in the phase space. In most of what follows the classical version will
be employed.

Microscopic information is obtained by integrating the unwanted variables out of the joint
probability density p({p, q}). For example if one wants the probability density for a single
coordinate qi

p(qi) =

∫
p({p, q}) {dp, dq

q=qi

}

1
=

Ω

∫
q=qi

{dp, dq}

Ω′(all but qi axis)
=

Ω

6

6
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For a more complex state of the system, X, involving specification of a subset {p′′, q′′} of the
microscopic variables

p(X) =

∫
p({p, q )

except {p′′,q′′
} {dp, dq}

}

1
=

Ω

∫
dp, dq

except p′′,q′′
{ }

{ }

Ω′(consistent with X)
=

Ω

volume of accessible phase space consistent with X
=

total volume of accessible phase space

We will see later that the thermodynamic information about the system is obtained from
the dependence of Ω on the constraints, Ω(E, V,N).

3. Quantities Related to Ω

Φ(E, V,N) ≡
∫

{dp, dq
p,q <E

}
H{ }

= cumulative volume in phase space

∂Φ(E, V,N)
ω(E, V,N) ≡

∂E

= density of states as a function of energy

⇒ Ω(E, V,N) = ω(E, V,N)∆
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4. Entropy

In general Ω increases exponentially with the size of the system. It is convenient to work with
an extensive measure of the phase space volume, one which is additive as two systems are
brought together in mutual equilibrium. A logarithmic measure of Ω satisfies this criterion.

S(E, V,N) ≡ k ln Ω(E, V,N)

≈ k ln Φ(E, V,N)

≈ k lnω(E, V,N)

The two approximate expressions hold due to the fact that for large N the error can be
shown to be of order lnN while the given term is proportional to N .

S(E, V,N) is called the entropy.

• It is a state function.

• It is extensive.

• It is a logarithmic measure of the microscopic degeneracy associated with a macroscopic
(that is, thermodynamic) state of the system.

• k is Boltzmann’s constant with units of energy per 0K.

5. Statistical Mechanical Definition of Temperature

Bring together two arbitrary systems 1 and 2, each represented by its own microcanonical
ensemble and therefore having well defined phase space volumes Ω1 and Ω2. While isolated
from the rest of the world they are allowed to interact thermally, d/Q1 = −d/Q2, but not
mechanically, d/W1 = d/W2 = 0. The interaction is weak enough that the two systems
maintain their identities, thus the individual phase space volumes (and the microscopic
variables on which they are defined) still make sense. Since the sum of the two systems
is isolated it also can be represented by its own microcanonical ensemble with phase space
volume Ω. Since Ω must take into account all the possible ways the total energy E can
be divided between the two subsystems Ω(E) can be expressed in terms of their individual
phase space volumes as follows:

E

Ω(E) = Ω1(E ′) Ω2(E
0

− E ′) dE ′
∫
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Consider the following reasonable question. What is the most probable value for E1 when
equilibrium has been reached? We can determine this from p(E1).

Ω1(E1) Ω2(E
p(E1) =

− E1)

Ω(E)

Note that this expression is consistent with the normalization of p(E1).∫ EE Ω1(E1) Ω2(E E1) dE1 Ω(E)
p(E1) dE1 =

∫
0

−
= = 1

0 Ω(E) Ω(E)

Now find where p(E1) has its maximum by finding where its derivative vanishes.

d
0 = (Ω1(E1)Ω2(E

dE1

− E1))

dΩ1(E1) dΩ2(E E
= Ω2(E

dE1

− E1) + Ω1(E1)
− 1)

dE1

dΩ1(E1) dΩ2(E2)
= Ω2(E2) 1

dE
− Ω1(E )

1 dE2

1 dΩ1(E1) 1 dΩ (E )
=

Ω1(E1) dE1

− 2 2

Ω2(E2) dE2

d d
= ln Ω1(E1)

dE1

− ln Ω2(E2)
dE2

Thus the maximum of p(E1) occurs when(
∂S1

∂E1

)
=

d/W1=0

(
∂S2

∂E2

)
d/W2=0

Solving would give the most probable value of E1. More important is the fact that this
expression specifies the equilibrium condition. Therefore(

∂S

∂E

)
1

= f(T ) equilibrium)
/W=0

≡ (in
d T
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The specific choice of f(T )

• agrees with the T defined empirically by the ideal gas law,

• agrees with the T defined thermodynamically by the efficiency of Carnot cycles.

6. Two Fundamental Inequalities

Consider the two systems in section 5. when they are not necessarily at the same temperature
before contact. Let E1 be the energy of system 1 before the contact is made and E1

∗ be its
energy after the combined system has reached mutual equilibrium. When contact is first
made the following relationship holds between the probabilities of finding system 1 at those
energies; the equality only holds if the two systems were in equilibrium before contact, which
would require E1 = E1

∗.

p(E1) ≤ p(E1
∗)

Ω1(E1)Ω2(E − E1) ≤ Ω1(E1
∗)Ω2(E − E1

∗)

Ω1(E1
∗) Ω2(E − E1

∗)
1 ≤

Ω1(E1) Ω2(E − E1)

0 ≤ S︸ 1(E1
∗)︷︷− S1(E1︸) +S2(E

∆S1

︸ − E1
∗)− S2(E − E1)

∆

y

︷︷
S2

But entropy is additive, so the entrop change for the entire system is ∆S =

︸
∆S1 + ∆S2.

Thus we have found the important result

• ∆S ≥ 0 for spontaneous changes in an isolated system

Now consider the special case where system 2 is so large compared to system 1 that the
heat added to it, d/Q2, does not change its temperature. System 2 is then referred to as a
temperature bath or thermal reservoir and T2 ≡ Tbath. This assumption allows us to find
an explicit relation for small changes in the entropy of system 2:

dE2
dS2 = statistical definition of temperature

T2

d/Q2
= since no work is done

T2

d/Q
= − 1

Tbath
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We can now rewrite the inequality derived above as it applies to this special case.

0 ≤ dS1 + dS2

d/Q
0 ≤ dS1 − 1

Tbath

From this we conclude that

d/Q• dS1 ≥ 1
when exchanging heat with a reservoir

Tbath

The two inequalities indicated by bullets, taken together, form the second law of thermody-
namics.

7. Entropy as a Thermodynamic Variable

The work done on a system is given by the expression

d/W =

 −PdV

 SdA

+ HdM + EdP + · · ·
FdL

≡
∑

Xi dxi

i

Here for convenience we have introduced the notation of a generalized “force” Xi conjugate
to some generalized external parameter xi.

In the microcanonical ensemble the energy is fixed at E. In general the internal energy of a
system is the average of the energy over all the accessible microstates, so in this case U is
identical to E and we can write the first law as

dE = d/Q + d/W

Now we examine the consequences of the statistical mechanical definition of entropy.

S ≡ k ln Ω = S( E, V,M, · · · )
constraints when computing Ω, a

complete set of independent ther-

modynamic variab

︸
les

︷︷ ︸

{ } where we have chosen to use the x
= S(E, xi ) i

as the constraints
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The statistical mechanical expression for the entropy can be inverted to give E as a function
of S.

S(E, V,M, · · ·) ↔ E(S, V,M, · · ·)

S(E, {xi}) ↔ E(S, {xi})

dE|d/W=0 = d/Q from the first law

dE|d/W=0 ≤ TdS utilizing the second law [the equality only holds for equilibrium

(reversible) changes]

Therefore

dE = d/Q + d/W

≤ TdS + d/W

 −PdV
≤ TdS + SdA

FdL

+ HdM + EdP + · · ·

The final line above is a fundamental result which expresses the combined first and second
laws of thermodynamics. We continue our development by solving this expression for the
differential of the entropy.

1 1 1 1
dS ≥ dE

T
− d/W = dE

T T
−

T

∑
Xi dxi

i

1 P H≥ dE + dV
T T

− dM
E

T
− d

T
P + · · ·

This expression leads to two fundamental results. The first is a restatement of the second
law of thermodynamics.

The only changes which can occur in an isolated system
(dE = dxi = 0) are those which increase the entropy or,
at best, leave it unchanged.
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The second result is that the connection between statistical mechanics and thermodynamics
in the microcanonical ensemble is through the entropy. In particular, if one knows the entropy
as a function of the constraints S(E, {xi}), or what is equivalent the phase space volume
Ω(E, {xi}), then one can find expressions for the generalized forces in terms of those same
variables by taking the appropriate derivative. The resulting expressions are the equations
of state for the system. In particular(

∂S Xj
=

∂xj

)
E,xi=xj

−
T(

∂S

∂V

)
P

=
E,M, TP(

∂S H
=

∂M

)
E,V,

−
TP(

∂S

∂P

)
=
E

E,V,M

−
T
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