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Maxwell Relations: A Wealth of Partial Derivatives

Comment On Notation In most textbooks the internal energy is indicated by the
symbol U and the symbol E is reserved for the exact energy of a system. Thus E may
fluctuate and the internal energy is its mean value, U =< E >. Of course, the essence
of thermodynamics is that the fluctuations of E about its mean are small and that
the macroscopic properties of the system are dominated by its average U . In some
texts, however (such as Reif), the symbol E is used for the internal energy. In most of
my notes and lectures I have reserved U for the internal energy. In the development
presented here I have chosen to use E for the internal energy for two reasons. First,
it is then consistent with a treatment of the same topic in Reif. Second, it gives a
pleasing form to a mnemonic device which is helpful in generating partial derivatives.

The Internal Energy For a hydrostatic system the combined first and second laws
of thermodynamics give

dE = TdS − PdV

If one considers E to be a function of S and V (its “natural’ variables), then one can
expand it as an exact differential.
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∂

∂V

((
∂E

∂S

) )
∂ ∂E

=
∂S ∂V

V S

(( )
S

)
V

∂

∂V

(
T

)
∂

= P
S ∂S

(
−

)
V(

∂T

∂V

)
=

S

−
(

∂P

∂S

)
V

This is useful information about derivatives of primary thermodynamic variables.
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The same technique, applied to other systems, gives similar information.

dE(S, L) = TdS + FdL ⇒
(
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)
∂
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)
L

dE(S, M) = TdS + HdM ⇒
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et cetera

Reflect for a moment about how these derivative relations came about. Recall that
for any state function f(x, y) of two independent variables x and y

∂f
=
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∂f

df

)
dx + dy

∂x
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)
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︷︷
y)

︸ ︸
B(
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︸
The amazing mathematical feature of the combined first and second law is that when
E is expressed in terms of the particular pair of variables S and V (reverting again to
the hydrostatic system as an example), the coefficients of the differentials are simply
the thermodynamic variables conjugate to S and V . That is why one refers to S and
V as the “natural” variables for E. Note that if one actually had E(S, V ) and took
the appropriate derivatives one would find T and P in terms of S and V , T (S, V ) and
P (S, V ), perhaps not the most practical form in which to express these quantities.
None the less, the differential form of the combined first and second law is exact no
matter what variables are used to express T and P .

The technique used above for generating relations between the partial derivatives
is so useful that one wonders if there are other related state functions to which it
can be applied. There are, but the state functions must each have the feature that
its total differential in terms of a pair of independent variables has, as coefficients,
the other thermodynamic variables. There are three additional functions with the
units of energy that have this property. These functions, together with the internal
energy, are referred to as “Thermodynamic Potentials” and have interesting physical
interpretations which will be studied later. For the moment we will concentrate on
their utility in generating derivative relationships.
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Helmholtz Free Energy F ≡ E − TS

dF = d(E − TS)

dF = TdS − PdV − TdS − SdT

= −SdT − PdV

F = F (T, V ) T&V natural variables

⇒
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)
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V

Enthalpy H ≡ E + PV

dH = d(E + PV )

dH = TdS − PdV + PdV + V dP

= TdS + V dP

H = H(S, P ) S&P natural variables

⇒
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Gibbs Free Energy G ≡ E + PV − TS

dG = d(E + PV − TS)

dG = TdS − PdV + PdV + V dP − TdS − SdT

= −SdT + V dP

G = G(T, P ) T&P natural variables

⇒
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Mnemonic Device

The figure above is constructed for a combined first and second law having the work
term written in generic fashion.

dE = TdS + Xdx

The four thermodynamic potentials are displayed at the corners of a square, proceed-
ing clockwise in alphabetic order. The side of the square between two thermodynamic
potentials displays the differential of the natural variable which is common to the po-
tentials, along with the sign of the associated term in the differential of the potential.
Thus each thermodynamic potential is bracketed by its natural variables. Note that
thermodynamically conjugate variables appear on opposite sides of the square with
different signs.
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A Maxwell relation is generated by stepping around the four sides of the square in
order (in either direction) then turning around and taking two steps backward. The
thermodynamic variables encountered in this trip are placed in the six positions in
the two partial derivatives in the Maxwell relation. The signs are accumulated on the
appropriate sides of the equality.

For a simple hydrostatic system

(−1)

(
∂S

)
∂V

= (−1)( 1)
∂P

T

−
(

∂T

)
P

M
For a simple magnetic system
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