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Introductory Optics 

MIT Department of Physics 
(Dated: April 3, 2007) 

The purpose of this experiment is to give you practice in optical measurements in a study of 
three fundamental phenomena of geometrical and physical optics: image formation, interference 
and diffraction, and polarization. You are expected to dig most of the relevant theory out of the 
references, perform data analysis to learn about errors, and write a paper about it. 

1. PREPATORY QUESTIONS 

1. Image formation: (a) Predict the relation be­
tween the measured image distance t and object 
distance s for a lens with focal length 10 cm in the 
form of a plot of t against s. (b) If the object is 
12.0 ± 0.5 cm away, where would you find the im­
age with 68% probability? 

2. Interference: A narrow beam (diameter ≈ 1 mm) 
of plane waves of wavelength 632.8 nm from a laser 
is incident on a reflection grating (see Figure 2 be­
low) at a grazing angle of α = 1.0◦. The grating 
has periodic grooves separated by 0.06 cm. The 
reflected beams strike a screen oriented perpendic­
ular to the plane of the grating and located 200 cm 
from the area of reflection. Predict the pattern of 
bright spots on the screen. Give the intensity pro­
file of a double slit of 50µm slit width separated by 
100µm on a screen 1m away for an incident laser 
operating at 632.8 nm. 

3. Polarization: A parallel beam of light of intensity 
I0 passes through two ideal linear polarizers with 
their transmission axes rotated through an angle θ 
with respect to one another. Predict the intensity 
I(θ) of the emergent beam as a function of the angle 
θ in the form of a plot of I against θ. 

4. Read section 13.1 of Reference [1] (available from 
the Junior Lab E-Library) and describe in general 
terms how a laser works. Describe, quantitatively, 
the difference in output between a 1 mW HeNe laser 
and a 100 W incandescent lightbulb. 

5. Having two lenses of 50 and 5 cm focal length, de­
scribe how you would build a telescope. Give a 
quantitative sketch and calculate the magnification. 

CAUTION While optical equipment is generally 
not hazardous except when it involves high-power 
or high-intensity light sources, it is frequently 
fragile. Take special care not to drop optical com­
ponents, set them down so their surfaces can be 
marred, or touch their surfaces with your fingers. 
Also, treat the HeNe lasers with respect; remem­
ber that the beam can travel to all parts of the 
room so be cognizant of who might be affected. 
Be particularly aware of potential reflections from 
objects located at some distance away from the 
experiment. Be sure to make use of beamstops. 

2. IMAGE FORMATION 

The lens equation for an ideal thin lens is 

1 1 1 
+ =	 (1) 
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where s and t are the distances of the object and image 
from the center plane of the lens, respectively, and f is 
the focal length. The focal length is a property of the 
lens that depends on its shape and composition. The 
sign of s is positive if the direction of propagation of 
the light is from the object to the lens; the sign of t is 
positive if the light propagates from the lens to the image. 
This relation holds for convex, or “positive” (f > 0), 
lenses and for concave, or “negative”, lenses (f < 0). 
The same equation and sign conventions also describe 
the object-image relations of concave (f > 0) and convex 
(f < 0) spherical mirrors. An image is called real if t > 0, 
virtual if t < 0. Note that if an image is virtual, the light 
does not pass through it. Other designations you might 
come across are “plano-convex” or “bi-convex” referring 
to whether or not both lens surfaces possess curvature. 
Typically, plano-convex lenses are used when imaging an 
object located an infinity and bi-convex lenses are used 
when s/t < 5. 

2.1. Observing Real Images 

Set up a 40-watt frosted-bulb light source illuminating 
the object (an arrow-cross works well), a ‘positive’ (con­
vex or bi-convex) lens, and a frosted glass viewing screen. 
From the optics rack, select a lens of focal length ≈ 5−40 
cm.1 Project an image of the object onto the frosted 
glass and vary the positions of the elements until it is 
“sharp”. Examine this image with another more power­
ful lens (i.e. shorter focal length lens) used as a magni­
fying glass. Remove the screen and examine the image 
plane in empty space directly both with your naked eye 
and with a magnifying glass. Describe your observations 

1	 This is easily checked to first order by holding up the lens in 
front of a window and noting the distance at which an object at 
infinity (e.g. a neighboring building) is focused upon a piece of 
white paper. 
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in your lab notebook with carefully drawn ray diagrams 
that show the critical rays from the source through the 
lens to the image on your eye’s retina (your eye is a cam­
era). Use a straight edge and a schematic “object” in 
the form of an arrow with its foot on the optical axis, as 
illustrated in Figure 1. 

2.2. The Focal Length of a Lens 

Tabulate a series of measurements of the object-lens 
distance, si, and the lens-image distance, ti, at six differ­
ent positions. For each pair of measured values com­
pute and tabulate as you go along the corresponding 
values of fi according to the lens equation. Estimate 
and record the error (measurement uncertainty) of each 
si and ti. Keep the random error (from at least 10 re­
peated measurements) separate from the systematic er­
rors (uncertainties in the exact location of lens center, 
etc.) and give an estimate of the total error expressed as 
f = x ± rran ± rsys. As you go along, plot 1/si against 
1/ti in your lab book next to the accumulating table of 
measurements. In the data analysis apply the techniques 
of error propagation (consult Reference [2]) through the 
lens equation to find the errors in the calculated values 
of fi. Finally combine your individual measurements of 
fi to obtain a best estimate of the lens’s focal length and 
the error. The sample mean µ and error of the mean σ of 
a set of measurements xi each with its error σi are given 
by the formulas in [2] 

xi/σ2 

µ = � , (2)
1/σ2 

1 
σ2 = � 

1/σi 
2 . (3) 

In carrying out a set of measurements like those above 
it is generally wise to explore as wide a range of the vari­
ables as you can, even though the fractional measurement 
uncertainties may be relatively large at the extremes. Re­
member σs and σt are obtained from repeated, indepen­
dent (your partner) measurements. If you keep s fixed, 
you get σt only! Make sure you have ≥ 10 independent 
measurements at one or more set of (si, ti). 

2.3. Measuring Magnification 

The rays that go through the center of an ideal (i.e. 
negligible thickness) thin lens, from whatever part of the 
object they arise, are not bent. From this fact it is ob­
vious that the magnification of a lens is M = −ti/si. 
Make a measurement to test this. Given a magnifying 
glass of 3× power, observe your image and evaluate the 
total magnification of this “microscope”. 
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FIG. 1: Example of a ray trace diagram for the formation of 
a magnified real image by a positive lens. Three critical rays from 
object to image are shown: 1) the ray leaving the object parallel to the axis is 
deflected through FP2; 2) the ray through the center of the lens is undeflected; 3) 
the ray through FP1, though it does not actually pass through the lens, is still a 
valid ray for the analysis; it is deflected at the lens plane in the direction parallel 
to the axis. The intersection of any two of these rays defines the position of the 
image. 

3. YOUNGS’S INTERFERENCE EXPERIMENT 

The original experiment by Young in 1800, “dis­
proved” Newton’s particle theory of light by demonstrat­
ing wave interference. Note today’s “wave-particle dual­
ism”, where photons and electrons (de Broglie) all can 
behave like waves or particles. In 1800 the source of light 
to illuminate the two pinholes was itself a pinhole illumi­
nated by sunlight (why was the first pinhole essential?). 
To get interference all three pinholes have to be quite 
small, so the resulting fringe pattern is very faint. With 
a laser as the light source the experiment does not require 
a first pinhole (why?) and is easy to do. 

For your interference experiments, use metal slides 
manufactured by Leybold-Didactic company (which can 
be identified by the “LD” in the upper left and the 
“46992” in the upper right). The measurements of 
the slit widths and spacings should be specified on the 
back of the slides. Mount a laser to the optical rail 
and direct the laser beam parallel to the optical rail 
and onto the small screen at a distance of ∼ 1m. BE 
SURE THAT YOUR BEAM DOESN’T ENTER 
ANYONE ELSES WORK SPACE! USE BEAM­
STOPS! Attach the laser (or the slits) to the 1-axis 
translating stage (± 0.2 inches) mounted on the optical 
rail. Mount the diffraction grating “transparency” in the 
“plate holder” and position it into the beam close to the 
laser so the beam illuminates both slits. Do you see two 
interference patterns? If so, make sure you understand 
which is which. Observe and measure the interference 
fringes on the screen. The interference pattern is small, 
so you will probably need to measure it using a gauge 
micrometer over a few periods. You should also stick a 
small piece of white paper on the screen and mark the 
positions of the fringes on the sheet with a pencil. Be 
sure to tape the paper into your notebook as data! Mea­
sure the distance from the slits to the projection screen 
or detector. Determine the wavelength of the laser light 
from your data, and assess the error. 
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FIG. 2: Schematic diagram of a reflection grating and repre­
sentative incident and reflected rays. 

3.1. Multiwave Interference 

Reflection and transmission gratings produce the phe­
nomenon of “multi-wave” interference which is employed 
in grating spectrometers for the analysis of atomic spec­
tra. Optical gratings generally have many grooves per 
mm, typically 600 to 3,600 mm−1 , and are commonly 
used near normal incidence. However, a reflection grat­
ing with only a few grooves per cm can be used at a 
small grazing angle of incidence to produce the same phe­
nomenon of multiwave interference. 

This technique is specially useful in the X-ray region 
of the spectrum, where wavelengths are of the order of 1
Å, reflectivity is vanishingly small except for very small 
grazing angles of incidence, and transmission gratings for 
X-ray spectroscopy must have ≈ 30,000 groves cm−1 with 
no X-ray absorbing material in the openings.2 

A machinist’s steel rule with a periodic engraved scale 
makes an effective grazing incidence reflection grating for 
visible laser light. Following a procedure described by 
[3], you can determine the wavelength of a laser beam by 
making a few simple measurements with such a rule. Fig­
ure 2 depicts a grating that consists of alternate strips of 
high and low reflectivity material running perpendicular 
to the page. Also shown are two parallel rays of an inci­
dent plane wave and two reflected, nearly parallel, rays 
of the Huygens wavelets spreading from reflection points 
separated by the distance S. 

At a given spot toward which the rays are converging 
on a distant screen, the amplitudes of the two Huygens 
wavelets will interfere constructively provided the differ­

2	 Such gratings are now being manufactured for X-ray astronomy 
at the MIT Microstructures Laboratory. Diffraction of X-rays 
from ruled gratings at grazing incidence is of fundamental im­
portance in the absolute determination of the wavelengths of 
X-ray emission lines which can then be used in Bragg reflection 
measurements to determine the sizes of the unit cells of crystals 
and the value of Avagadro’s number! 
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FIG. 3: Arrangement for measuring the interference pattern 
of parallel light reflected from a ruled grating. 

ence in the path lengths along the rays from the incident 
plane wave front represented by the line ac is an integer 
number of wavelengths, i.e. 

S(cos α − cos β) = nλ. (4) 

For small angle this equation can be approximated by 

S
β2 − α2 

= nλ.	 (5)
2 

Since the amplitude of every wavelet that contributes 
to the optical disturbance at the spot on the screen can 
be paired up with another emanating from a point a dis­
tance S away, the condition for constructive interference 
must hold for all the light that reaches the spot. From 
Equation 5 one can expect to observe a series of spots 
on the screen at positions corresponding to the reflection 
angles. 

2nλ 
βn = + α2 (6)

S 

The experiment consists of measuring α and βn for n 
= . . . − 1, 0, 1, 2, 3, . . .. and checking the constancy of the 

quantity S β2 

2
−
n
α2 

which is a measure of the wavelength 

of the light. (A more complete theory of the multiwave 
interference is given in Appendix A.) 

3.1.1. Multiwave Interference - Procedure 

Mount the laser and a steel ruler on the optical rail 
separated by ∼ 0.5m. Tilt the ruler slightly so that the 
beam strikes the 1/32” (or finer) scale at grazing inci­
dence near the tip of the ruler, allowing a portion of the 
beam to escape reflection. Place a screen at a distance of 
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∼ 2 m away from the ruler to show the locations of the 
unreflected portion of the beam and the multiple reflected 
beams. Measure the positions of the spots and the dis­
tance from the reflection point to the screen. These are 
the data you need to check Equation 6 and compute the 
wavelength of the laser light and give an error estimate. 

4. POLARIZATION THEORY 

Light is a transverse wave in the electromagnetic field. 
The intensity (ergs cm−2 s−1) of a light wave is propor­
tional to the square of the amplitude of the oscillating 
electric field. An ideal linear polarizer transmits only the 
component of the electric field oscillating in the direc­
tion of the “transmission axis”. Thus two ideal polarizers 
oriented so their transmission axes are perpendicular to 
one another will completely absorb an incident beam of 
light. The filters used in this experiment are good but 
not ideal polarizers. In this experiment you will measure 
the transmission coefficient of two commercially available 
(Edmund Scientific) filters as a function of the angle be­
tween their transmission axes. 

4.1. Polarization - Procedure 

On an optical rail arrange an incandescent lamp, a 
rotatable Polaroid filter and a photodiode detector so 
that the intensity of light passing through the filter is 
registered by the photodiode. Record and plot the signal 
voltage as a function of the angle of orientation of the 
polarizer. Next, insert a second polarizer in front of the 
first, and again record and plot the detector voltage as 
a function of the orientation angle. Explain your data 
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in light of the answer to Preparatory Question 3. Figure 
out a way to determine the direction of the transmission 
axis of a polarizing filter, i.e. the orientation in the plane 
of the filter of the electric field of the transmitted wave. 
Recall from 8.03 how the reflectivity of a dielectric surface 
depends on the polarization of the incident light. 

5. STATISTICAL EXERCISE 

1. For two fixed values of s, make 16 indepedent mea­
surements of t. Plot the two distributions and eval­
uate the mean and variance of t. 

2. Show	 explicitly by error propagation, how this 
translates to a value of uncertainty for the focal 
length ± error. Are the two determinations consis­
tent? 

3. Make a fit to ALL (s, t) measurements to determine 
the final focal length ± uncertainty. 

6. POSSIBLE TOPICS FOR ORAL EXAM 

1. Derivation from Snell’s law of the lens equation for 
a thin lens of glass with index of refraction n and 
radii of curvature R1 and R2. 

2. Theory of the ruler diffraction experiment. 

3. Derivation	 and solution of the partial differen­
tial equations governing electromagnetic waves in 
space. 

4. Theoretical explanation of the results you obtained 
in the polarization experiment. 

[1] E. Hecht, Optics (Addison Wesley, 2002), 4th ed. 
[2] P. R. Bevington and D. K. Robinson, Data Reduction and 

Error Analysis for the Physical Sciences (McGraw-Hill, 
2003), 3rd ed. 

[3] A. Schalow, Am. J. Phys. 30, 922 (1965). 
[4] M. Born and E. Wolf,	 Principles of Optics (Cambridge 

University Press, 1999), 7th ed. 
[5] B. Rossi, Optics (Addison Wesley, 1957). 

APPENDIX A: MULTIPLE WAVE

INTERFERENCE FROM A GRAZING

INCIDENCE REFLECTION GRATING


For a general discussion of the principles of multiple 
wave interference see References [1, 4, 5] or other texts 
on physical optics. Here we apply those principles to the 
analysis of the situation depicted in Figure 2. Two rays 
of a plane wave incident at grazing angle α on a surface 
with an ideal periodic pattern of reflectivity - 100 percent 

reflectivity strips of width w separated by zero reflectivity 
strips of width s−w. The reflected light is projected onto 
a distant screen so that the optical intensity at a given 
point on the screen is proportional to the squared sum of 
the amplitudes of the Huygens wavelets reflected from all 
elements of the illuminated portion of the grating. Ac­
cording to Huygen’s principle, the total amplitude A at 
the spot corresponding to reflection angle β is propor­
tional to the sum of the amplitudes of the wavelets from 
each differential element of surface area. Each differen­
tial amplitude can be expressed as the real part of com­
plex amplitude proportional to exp [i(ωt − k r)] where · 
k	 r = 2πx (cos α − cos β) is its phase retardation rela­· λ 
tive to that of the wavelet reflected from the point “a” 
in Figure 2, and x is the distance along the grating from 
point “a”. The total amplitude is proportional to the 
integral over the surface (we suppress the dimension into 
the page): 
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� NS x 
A ≈ exp [2πi (cos α − cos β)]R(x)dx (A1)

λ 

� W 
[2πi 2 (N −1)S 

λλ
Sx 

λ[2πi (cos α−cos β)][1 + e[2πi (cos α−cos β)] + e (cos α−cos β)] + . . . + e[2πi (cos α−cos β)]]dx (A2)eA ≈ 
0 

λ

sin U sin NV 
A ≈ 

U sin V
, (A3) 

where U = 2π w (cos α − cos β) and V = 2π S (cos α −λ λ 
cos β). 

After integration and substitution of the limits, the 
first bracket is evaluated with the aid of De Moivre’s 
theorem, viz. exp(iθ) = cos θ + i sin θ. The second 
bracket is first evaluated as a geometric series of the form 
1+z+z2+. . .+zN −1, and then with the aid of De Moivre’s 
theorem. The intensity I, proportional to the square of 
the amplitude (the complex amplitude times its complex 
conjugate), is 

� �2 � �2sin U sin NV 
I ≈ 

U sin V
. (A4) 

Note that as w S , i.e. as the width of the non­→ � 
sin NV 

�2
reflecting gaps approaches zero, I V which is →
large only near V = 0. This means that as the gaps 
are reduced in width, the ratio of intensity in the nth 
spot to the intensity in the n = 0 spot (i.e. the ordinary 
specular reflection spot) falls more and more rapidly with 
increasing n until the diffracted spots disappear. 
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