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Compton Scattering 

MIT Department of Physics 
(Dated: November 20, 2007) 

You will observe the scattering of 661.6 KeV photons by electrons and measure the energies of the 
scattered gamma rays as well as the energies of the recoil electrons. The results can be compared 
with the formulas for Compton scattering, considering the quantized photon like a particle. 

1. PREPARATORY QUESTIONS 

1. Describe four distinct ways in which 2 MeV photons 
can interact with matter. 

2. Derive an expression for the final energy of a photon 
of initial energy E scattered from a free electron, 
initially at rest, at an angle θ from the forward di­
rection, according to the Compton kinematics (see 
Reference [1]). 

3. Sketch	 and explain the principle features of the 
pulse-height spectrum obtained from a NaI scintil­
lation counter irradiated with 661.6 KeV photons 
(see Reference [2]). Give a qualitative reason for the 
scatter of energy values measured with these coun­
ters observing the ‘line’. The pulse height spectrum 
from 661.2 keV gamma’s into the counter will show 
a line and a continuum. Explain both features with 
a sketch and give keV values for the line and for the 
Compton edge. 

Suggested schedule: 

• Day 1 - Familiarize yourself with the equipment and 
do Section 4.1 

• Day 2 - Repeat Section 4.1 and do Section 4.2. By 
the end of this session you should have verified that 
Escat + Erecoil ≈ 662keV for at least two angular 
positions. 

• Day 3 - Perform Section 4.3 

• Day 4 - Repeat portions of the experiment that 
need improvement. 

2. INTRODUCTION 

By 1920 the successes of the quantum theories of black­
body spectra (Planck, 1901), the photoelectric effect 
(Einstein, 1905) and the hydrogen spectrum (Bohr, 1913) 
had established the idea that interactions between elec­
tromagnetic radiation of frequency ν and matter occur 
through the emission or absorption of discrete quanta of 
energy E = hν. The next crucial step in the development 
of the modern concept of the photon as the particle of 
electromagnetic radiation was taken by Arthur Compton 
in the interpretation of experiments he initiated in 1920 

to measure with precision the wavelengths of X rays scat­
tered from electrons in materials of (low atomic number) 
[1, 3]. The phenomena of X-ray scattering had already 
been studied intensively. It was known that the penetrat­
ing power of X rays decreases with increasing wavelength 
and that X rays are less penetrating after being scattered 
than before, which indicated that the scattering process 
somehow increases their wavelength. 

Compton’s idea was to use the recently developed tech­
nique of high-resolution X-ray spectrometry, based on 
measurement of the angle of Bragg reflection of X-rays 
from crystals, to measure precisely the wavelengths of 
the scattered X-rays [4]. Irradiating a carbon target with 
an intense collimated beam of monochromatic molybde­
num Kα X-rays and using an ionization chamber as the 
detector in his spectrometer, Compton found that the 
spectrum of scattered X rays had two distinct spectral 
lines, one at the wavelength of the incident X-rays and 
another at a wavelength that was longer by an amount 
that depends on the angle of scattering. The scatter­
ing without a wavelength shift was readily explained 
by the classical theory of coherent scattering of electro­
magnetic waves from electrons bound in atoms. How­
ever, the classical theory provided no explanation of the 
wavelength-shifting “incoherent” scattering process. The 
phenomenon of Bragg reflection used in Compton’s mea­
surements was a clear demonstration of the wavelike char­
acter of the X-rays. Nevertheless, Compton put forward 
the apparently contradictory idea that X-rays, known to 
be electromagnetic radiation of very short wavelength, 
interact with electrons like particles of zero rest mass so 
that their energy E = hν = hc/λ and momentum p are 
related by the relativistic equation for particles of zero 
rest mass, namely p = E/c. He calculated according 
to relativistic mechanics the relations between the initial 
and final energies and momenta of an X-ray quantum 
and a free electron involved, like billiard balls, in an elas­
tic collision. In this way he arrived at the formula for 
the “Compton shift” in the wavelength of incoherently 
scattered X-rays, namely (see [2], Appendix A) 

h
Δλ = (1 − cos θ) (1) 

mc 

where m is the mass of the electron, and θ is the an­
gle between the trajectories of the incident and scattered 
photon. 

The agreement between Compton’s experimental re­
sults confronted physicists and philosophers with the con-
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ceptual dilemma of the particle-wave duality of electro­
magnetic radiation. In particular, how was one to un­
derstand how each particle of light in a Young interfer­
ence experiment goes simultaneously through two slits? 
The dilemma was further compounded when, in 1924, 
DeBroglie put forward the idea that material particles 
(i.e. electrons, protons, atoms, etc.) should exhibit wave­
like properties characterized by a wavelength λ related to 
their momentum p by the same formula as that for light 
quanta, namely λ = h/p. In 1927 the wave-like properties 
of electrons were discovered by Davisson and Germer in 
experiments on the reflection of electrons from crystals. 
A particularly interesting account of these developments 
is given by Compton and Allison in their classic treatise 
[5]. 

2.1. Experimental Goals 

In this experiment you will measure: 

1. The	 energies of Compton-scattered gamma-ray 
photons and recoil electrons, 

2. The frequency of occurence as a function of angle 
θ, 

3. The total cross section of electrons for Compton 
scattering. 

The results of 1.) will be compared with the predictions 
of Compton kinematics. The results of 2.) will be com­
pared with the predictions of the classical (Thomson) 
theory of X-ray scattering and with the Klein-Nishina 
formula derived from relativistic quantum theory. 

The experimental setup employs a radioactive source 
of 661.6 keV photons from 137Cs, and two NaI scintilla­
tion counters. One counter serves as the scattering target 
and measures the energy of the recoil electrons; the other 
counter detects the scattered photons and measures the 
energy they deposit. Both the target and scatter coun­
ters have a scintillator consisting of a 2”x2” cylinder of 
thallium-activated sodium iodide optically coupled to a 
photomultiplier. A 661.6 keV photon traversing sodium 
iodide has about equal probability of undergoing pho­
toelectric absorption and Compton scattering. A photo­
electric absorption event is a quantum mechanical transi­
tion from an initial state consisting of an incident photon 
of energy E and a neutral atom to a final state consisting 
of an excited ion with a vacancy in one of its inner shells 
where the electron was formerly bound and a free “pho­
toelectron” with kinetic energy E − W , where W is the 
binding energy of the electron in the neutral atom. The 
energetic photoelectron loses its energy within a small 
fraction of a µsec by multiple coulomb interactions with 
electrons and nuclei in the sodium iodide crystal, and a 
certain fraction of the lost energy is converted into scin­
tillation light. Meanwhile, the ion from which the photo­
electron was ejected loses its energy of excitation through 

a cascade of transitions that fill the vacancy in its elec­
tronic structure and give rise to lower energy photons or 
electrons that, in turn, lose their energy in the crystal 
and generate additional scintillation light. 

The total amount of scintillation light produced is 
closely proportional to the total amount of energy dissi­
pated in all these processes. As a consequence the pulse 
height spectrum of a NaI scintillation counter exposed to 
monoenergetic gamma rays shows a distinct ”photoelec­
tric” peak which facilitates accurate calibration in terms 
of pulse height versus energy deposited. The counters 
can then be used to measure the energies of scattered 
photons and recoil electrons. The following background 
topics should be studied in [2, 6]: 

1. Kinematics and theory of Compton scattering; 

2. Properties of 137Cs; 

3. Scintillation	 counters and the interpretation of 
pulse height spectra (see preparatory question 3); 

4. Radiation safety; 

5. Parameter and error estimation [6]. 

3. EXPERIMENTAL ARRANGEMENT 

The experimental arrangement for the Compton ex­
periment is shown schematically in Figure 1. The 2”x2” 
cylindrical “recoil electron” or “target” scintillator de­
tector (Canberra Model 802-3/2007), is irradiated by a 
beam of 661.6 keV photons emitted by ≈ 100 µcuries 
(≈ 1 µgram!) of 137Cs located at the end of a hole in a 
large lead brick which acts as a gamma-ray “howitzer”. 
If a photon entering the target scintillator scatters from 
a loosely bound, effectively free, electron, the resulting 
recoil electron may lose all of its energy in the target, 
causing a scintillation pulse with an amplitude propor­
tional to the energy of the recoil electron. If the scattered 
photon emerges from the target scintillator without fur­
ther interaction, and if its trajectory passes through the 
NaI crystal of the ”scattered photon” detector, it will 
have a substantial probability of depositing all of its en­
ergy by a single photoelectric interaction or by a sequence 
of Compton scatterings and photoelectric interactions. 
This will produce a scintillation pulse that contributes 
to the “photopeak” of the pulse height spectrum. The 
median channel of the photopeak in the multichannel an­
alyzer (MCA) display is a good measure of the median 
energy of the detected photons. If the scattered photon 
undergoes a Compton scattering in the scatter scintilla­
tor and then escapes from the scintillator, the resulting 
pulse, with a size proportional to the energy of the Comp­
ton recoil electron, will be registered in the Compton re­
coil continuum of the spectrum. Several experimental 
details are considered in [7, 8, 9, 10, 11]. 

In the experimental arrangement described by [2] 
(p.256) the target is inert material (not a detector), 
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FIG. 1: Schematic diagram of the experimental arrangement for measuring Compton Scattering. Note that while most of 
the equipment (NIM Crate, NIM modules and detectors are on the lab bench, the two MCA cards are installed inside of the 
computer. 

The scatter counter suffers background due to gamma-
ray photons leaking through the lead from the 137Cs 
source, cosmic rays, and radioactive isotopes in the envi­
ronment which is suppressed by the use of very heavy (≈
200 lb) lead shielding around the source and the scatter 
counter. Without such shielding and without any elec­
tronic tricks the pulses produced by Compton scattered 
photons would be buried in the background. In a better 
way, the compton scattered signal can be discriminated 
from the background using time coincidence techniques, 

as described in the following paragraphs. 

In our experiment (see Fig. 1) both the recoil electron 
detector and the scattered photon detector are scintil­
lation detectors. Circuits are arranged so that a pulse 
from a detector is accepted for pulse height analysis by 
the multichannel analyzer (MCA) only if it is coincident 
(within a fraction of a µsec) with a pulse from the other 
detector. Coincident pulses occur when a gamma-ray 
photon produces a Compton-recoil electron in the recoil 
electron detector, and the Compton-scattered photon is 
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subsequently absorbed in the scattered photon detector. 
The two nearly simultaneous pulses produced in such 
an event are amplified and fed through inverters (Ortec 
Model 533) to constant fraction discriminators (CFD’s) 
(Canberra Model 2126) whose threshold is user selectable 
between -50 mV and -1 V through a 10-turn potentiome­
ter. (The inverters are required because the amplifiers 
are designed to put out positive pulses, whereas the CFDs 
are designed for negative input pulses.) CFD’s employ 
a historically interesting method to achieve precise tim­
ing described in Appendix B. Your experiment does not 
require this accuracy, and it is superceded by modern-
electronics. 

3.1. Coincidence Techniques 

A true Compton event will produce coincident (within 
2 µs) signals in both detectors. If the logic (square) dis­
criminator outputs overlap, the coincidence (‘AND’) pro­
duces an output ‘YES’ signal to the gate generator, which 
in turn notifies the MCA in the computer to analyze the 
pulse heights generated by this event. Most likely it is 
a ‘Compton Event’, however there is a chance that two 
different (background) events accidently occured within 
the overlap time 2τ given by the discriminator outputs. 
From a scatter counter with rate ns and target counter 
with rate nt the accidental rate 

nacc = 2τnsnt (2) 

is small unless you have ‘noise’ increasing ns or nt. A 
good method to set up the coincidence uses a Na22 source 
placed in between the two detectors. But for Compton 
coincidences consider that for small θ the recoil (target) 
energy and hence signal are small. If the signals are below 
your discriminator threshold you fail to see coincident 
Compton events at small θ. 

3.2. Gating the MCA 

In principle, the gate should tell the MCA ‘ahead of 
time’ that a good event is coming. With the present 
electronics, this is not possible so we try to catch the 
majority of the signal (see Fig. 2) including the peak. 

The analog pulse shown is derived from the ‘unipolar’ 
output of the amplifier. The ‘bipolar’ has positive and 
negative peaks and is more tricky to use. Nuclear physi­
cists use it at ‘high’ rates. 

When you think you have everything working correctly, 
and before you commit to a long series of measurements, 
check the performance at the extreme values of θ, say 0◦ 

and 150◦. At both positions the peaks in the spectra due 
to the scattered photons and the recoil electrons should 
stand out clearly. If they don’t, then more adjustments 
must be made to achieve correct operation of the coin­
cidence gate logic. In coincidence mode, the MCA his­
togram is not updated unless an appropriate gate pulse 
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FIG. 2: Schematic representation of the proper time rela­
tion between the photomultiplier tube signal (amplified and 
inverted), whose pulse height is to be measured, and the coin­
cident gate pulse produced by the Gate and Delay Generator 
NIM module. The coincident gate pulse needs to arrive before 
the peak of the pulse and persist for ≥ 0.5µsec after the pulse 
peak. 

arrives at the gate input during the rise of the signal 
pulse. During the “dead time” required for each pulse 
height analysis (≈ 8µsec for the MCA’s used in Junior 
Lab) the input to the pulse height analyzer is held closed 
by a “disable gate” so that the arrival of a second pulse 
will not interfere with the current analysis. More details 
of the specific MCA’s (Perkin-Elmer Model Trump-PCI) 
used in Junior Lab are available in the Junior Lab Filing 
Cabinet or in the online e-library. 

4. EXPERIMENTAL PROCEDURE 

Keep the lead door of the gamma-ray howitzer closed 
when not in use. The purpose of the procedures described 
below is to acquaint you with the operation of the equip­
ment, particularly the coincidence scheme which permits 
the experiment to achieve a good signal/background ratio 
with a minimum amount of shielding. The steps below 
suggest a sequence of tests and adjustments to achieve 
that purpose, but you should feel free to devise your own. 

4.1. Experimental Calibration 

Set up and test the experimental arrangement with 
511 keV annihilation photons from a 22Na calibration 
source. 22Na, a radioactive isotope of sodium, decays to 
an excited state of 22Ne by emission of an anti-electron, 
i.e. a positron. The excited neon nucleus, in turn, de­
cays quickly to its ground state by emission of a 1.27 
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MeV photon. Meanwhile, the positron comes to rest in 
the material in which the sodium isotope is embedded, 
combines with an electron to form an electrically neutral 
electronic atom called positronium (discovered at MIT in 
1947 by Prof. Martin Deutsch). The latter lives about 
10−7 s until the electron and positron annihilate yield­
ing two 511 keV (= mec

2) photons traveling in oppo­
site directions. Thus 22Na is a handy source of pairs of 
monoenergetic photons traveling in opposite directions 
which can be used to test a coincidence detector system. 

1. Set up the NaI recoil electron and scattered pho­
ton scintillation detectors as illustrated in Figure 
1. Turn on the power to the NIM bin, HV sup­
plies, MCA and oscilloscope. Keep the door on the 
137Cs source howitzer closed to reduce the intensity 
of 661.6 keV photons at the detectors. 

2. Adjust the gain of the scattered photon detector 
and calibrate it. Apply high voltage to the scatter 
counter photomultiplier (≈ +1000 VDC). Using the 
Maestro-32 MCA software, turn off the coincidence 
gate requirement on the MCA. Place the 22Na cal­
ibration source near the scattered photon detector 
and examine the output of the scattered photon 
amplifier signal (following the pre-amplifier AND 
the amplifier in series) with the oscilloscope. Ad­
just the gain so that the amplitude of the pulses 
produced by 511 KeV annihilation gamma rays is 
about +7 volts. (You might see that a few, very 
high energy pulses saturate the amplifier result­
ing in ‘square’ peaked signals. Since the Compton 
scattering experiment will measure only energies < 
662 KeV, it is okay to discriminate against these 
pulses.) Determine the gain setting of the primary 
amplifier at which non-linear response begins, as 
indicated by a flattening of the top of the pulse as 
viewed on the oscilloscope. Then reduce the pri­
mary amplifier gain sufficiently to assure a linear 
response up to energies safely above the 662 keV 
energy of the 137Cs photons. 
Now feed the output pulses from the amplifier to 
the input of the MCA and acquire ∼30 seconds of 
pulse height data using the acquisition presets sub­
menu. Examine the Energy spectrum/histogram of 
pulses from the scattered photon detector and ad­
just the gain of the amplifier so that the median 
channel of the photopeak for 511 keV photons is ≈
2/3 of the full scale MCA range (check that this 
is set to 2048 channels. Calibrate the counter with 
other plastic rod calibration gamma-ray sources. A 
good set consists of 137Cs (661.6 KeV), 22Na (511 
KeV), and 133Ba (356, 302 and 81 KeV plus other 
lines) each of which produce easily identified pho­
topeaks. Be aware that too high a counting rate 
will spoil the spectrum by overlapping signals and 
amplifier saturation. 
Write in your lab notebook a succinct de­
scription of what you are doing along with 

the data so that you can later recall exactly 
what you did and repeat it quickly. You will 
have to redo the calibration at the start of 
each lab session because other users will have 
changed the settings. When you have identi­
fied the photopeaks and are confident about the 
counting rates, measure the median channels of the 
photopeaks and plot the average median photopeak 
channel numbers versus the photon energies on mil­
limeter graph paper to provide yourself with a cal­
ibration curve. The simplest way to estimate the 
random error in a measurement of the median is to 
repeat it five or more times and then evaluate the 
root mean square (rms) deviation of the successive 
measurements from their mean value.) 

3. Adjust and calibrate the recoil electron ‘target’ de­
tector in the same way. 

4. Send the amplified	 recoil electron and scattered 
photon signals to the Inverter module and then 
send the resultant negative polarity pulses into the 
two Discriminator.. Examine the positive output 
pulses generated by the units. 

5. Send the two Discriminator outputs into Channels 
1 and 2 of the Coincidence module and examine its 
output. (It’s easiest if you temporarily use a single 
detector signal to trigger both discriminators for 
this test.) 

6. Send the output from the Coincidence circuit into 
the Gate Generator Unit and explore its operation. 
Adjust the delay of the delay amplifier so the coin­
cidence gate pulse arrives at the MCA gate input 
during the rise of the analog signal pulse (see Fig­
ure 2). A good way to verify the action of the gate 
pulse is to feed the pulses from one of the amplifiers 
to both CFD inputs. This will ensure that a coin­
cidence pulse is generated at relatively high rates. 
(Students should play with the gate generator con­
trols, specifically delay and width, to verify the op­
eration of the MCA card coincidence circuitry as 
described in Figure 2). 

7. Test the coincidence logic.	 Place the 22Na source 
between the two scintillators so that pairs of annihi­
lation photons traveling in precisely opposite direc­
tions can produce coincident pulses in the two coun­
ters. For this test it is interesting to reduce the gain 
by a factor of 2 so that the photopeak of the 1.27 
MeV photons can be seen on the MCA spectrum 
display. Compare the spectrum with and without 
the coincidence requirement, and observe the effect 
of moving the source in and out of the straight line 
between the scintillators in order to observe hits by 
a pair of annihilation photons. Take careful notes 
and be sure you understand what you observe. Do 
not hesitate to ask for help if you need it. In each 
of the above steps it is very useful to sketch a 
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picture (or generate a bitmap using the Ag­
ilent digital oscilloscopes) of the waveforms 
taking particular note of their amplitudes, 
rise and fall times and temporal relation­
ships with other signals (e.g. gates) 

4.2. Compton Scattering Using 137Cs 

This section details the measurement of the energies 
of the scattered gamma rays and the recoil electrons as 
functions of the scattering angle θ. 

1. Align the primary gamma-ray beam from the 137Cs 
source in the howitzer. Position the howitzer and 
the scatter counter so that the source (at the inside 
of the hole in the lead howitzer) and the scatter 
counter scintillator are at opposite ends of a diam­
eter of the round platform, with the source ≈40 cm 
from the center of the scintillator. (Keep careful 
notes about the exact geometry you choose for the 
setup so you can return to it if necessary at a later 
time.) Open the door of the howitzer and mea­
sure the rate of pulses in the photopeak from the 
scatter counter as a function of its position angle. 
In other words, measure the “profile” of the beam 
and determine θ = 0. Check that the beam profile 
is symmetric about a line from the source through 
the center of the turntable to insure that the tar­
get counter will be uniformly illuminated when it 
is placed at the center. 

2. Adjust the discriminators of the CFDs to insure 
that they will generate coincident pulses whenever 
a Compton scattering occurs in the target scintil­
lator with a scattering angle in the range you wish 
to cover. Position the NaI target counter over the 
center of the turntable at a height such that the 
axis of the beam intersects the mid-plane of the 
scintillator. For a preliminary test, connect the (in­
verted) output of the target amplifier to the inputs 
of both CFDs. Simultaneously connect the output 
of the target amplifier to the “INPUT” BNC con­
nector on the MCA card in the PC. Connect the 
output of the coincidence circuit to the gate gen­
erator module and the output of the gate genera­
tor to the “GATE” BNC on the MCA card. Us­
ing the Maestro-32 software package, set the dis­
criminators as low as possible without getting into 
the rapidly rising spectrum of photomultiplier noise 
such that the accidental coincidence rate would ri­
val the true coincidence rate (see preparatory ques­
tion 5 above). Start a spectrum accumulation and 
test the effects of changing the delay of the gate 
pulse with respect to the signal pulse. 

3. Measure the median energy Eγ
� of scattered 

photons and the median energy Ee of recoil 
electrons as functions of the position angle θ� 

of the scattered photon detector. With both 
the source in the howitzer and the scintillator of the 
scattered photon detector located ≈40 cm from the 
recoil electron detector, set the position angle of the 
scatter counter at 90◦. With the coincidence re­
quirement enabled, accumulate a spectrum of scat­
tered photon detector pulses on the ‘scatter’ MCA 
and a spectrum of recoil electron detector pulses on 
the ‘target’ MCA and measure the median channel 
of the pulses in the photoelectric peaks. Repeat this 
dual measurement at several position angles from 
just outside the primary beam profile to as near to 
180◦ as you can get. A good strategy is to take 
data at widely separated position angles, say 90◦, 
30◦, 120◦, 150◦ and then fill in when you have time. 
Plot the raw results (median energy against posi­
tion angle) as you go along to guide your measure­
ment strategy. It is wise to check the calibration 
between each measurement by switching the (soft­
ware based) GATE setting to ‘OFF’ and record­
ing in your notebook the median channels of the 
photopeaks produced by 661.6 KeV photons from 
the 137Cs calibration source, the 511 KeV photons 
from 22Na, and the 356 KeV and 81 KeV photons 
of 133Ba. 

Record the integration time of each measurement 
to find the rate as a function of θ to later compare 
with Thomson’s classical prediction. 

4.3. Scattering Cross Section Measurements 

In this part of the experiment, you will measure the 
total scattering cross section per electron in plastic. The 
plastic scintillator blocks used as absorbers in this mea­
surement are made from polyvinyltoluene (C10H11, den­
sity = 1.032 g/cc, www.bicron.com) composed of almost 
equal numbers of carbon and hydrogen atoms. The most 
tightly bound electrons are in the K-shells of the car­
bon atoms where they are bound by 0.277 KeV, which is 
small compared to 662 KeV. In fact, many other materi­
als can be used providing approximately ‘free’ electrons. 
This material resembles most modern plastic scintilla-
tors. You will determine their quantum efficiency, e.g. 
how often they ‘see’ γ-rays. Place the scatter counter at 
0◦ and remove the target counter from the beam. Mea­
sure the counting rates in the 661.6 KeV photopeak of 
the NaI scatter counter with no absorber and with three 
or more different thicknesses of plastic scintillator placed 
just in front of the exit hole of the howitzer. Determine 
the thicknesses (in g cm−2) of the scintillator blocks by 
measuring their dimensions and mass. Plot the natu­
ral logarithm of the measured rate as a function of the 
thickness and check the validity of your data by observ­
ing whether the data points fall along a straight line as 
expected for exponential attenuation. Question: Why is 
it better to place the absorbers as near as possible to the 
source rather than just in front of the detector? 
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5. ANALYSIS 

1. Plot Etarget + Escatter vs. θ. 

2. Compare your results on the angular dependence 
of energies of the scattered photons and the re­
coil electrons with the predictions of the Compton 
formula. Since the relation between the scattered 
photon energy Eγ

� and the scattering angle θ, is 
non-linear, one can anticipate that a plot of the 
measured energy versus position angle could be fit­
ted only by a curve. However, an easy manipula­
tion of the Compton formula yields a linear rela­
tion between 1/Eγ

� and 1-cos θ. Plot 1/Eγ
� against 

(1 − cos θ) with appropriate error estimates. On 
the same graph plot the calculated curve of 1/Eγ

�

against (1 − cos θ) based on the Compton formula. 
Do a similar analysis of the recoil electron data on 
a separate graph. Plot 1/Ee against a function of 
θ such that the expected relation is linear. Com­
ment on the degree of conformance of the prediction 
to your experimental results and discuss possible 
causes of any systematic differences. 

3. Plot the measured ‘rate’ as a function of θ and com­
pare to the classical Thomson prediction. 

4. Compute	 the total interaction cross section per 
electron. The attenuation of a collimated beam of 
particles by interactions in a slab of material of 
thickness x (cm) is described by the formula 

I(x) = I0e
−µx	 (3) 

[1] A. Compton, Phys. Rev. 21, 483 (1923), brother of K.T. 
Compton, MIT President. 

[2] A. Melissinos and J. Napolitano, Experiments in Modern 
Physics (Academic Press, Orlando, 2003), 2nd ed. 

[3] A. Compton, Phys. Rev. 22, 409 (1923). 
[4] A. Compton, Nobel Prize Lecture (1927). 
[5] A. Compton and S. Allison,	 X-Rays in Theory and Ex­

periment (Van Nostrand, Princeton, 1992), qA481. 
[6] P. Bevington and D. Robinson, Data Reduction and Er­

ror Analysis for the Physical Sciences (McGraw-Hill, 
2003), 3rd ed. 

[7] G. Knoll,	 Radiation Detection and Measurement (John 
Wiley, Orlando, 1999), 3rd ed., ISBN 0471073385. 

[8] R. D. N.H. Lazar and P. Bell, Nucleonics 14, 52 (1956). 
[9] R. Garner and K. Verghese,	 Nuclear Instruments and 

Methods 93, 163 (1971). 
[10] R. Hofstadter and J. McIntyre, Physical Review 78, 619 

(1950). 
[11] J. Higbie, American Journal of Physics 42, 642 (1974). 
[12] D.	 J. Griffiths, Introduction to Quantum Mechanics 

(Prentice-Hall, 1995). 
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where I0 is the initial intensity and µ is the to­
tal linear attenuation coefficient (cm-1). In plastic 
scintillator the attenuation of 661.6 keV photons is 
due almost entirely to Compton scattering. Under 
this circumstance the total attenuation coefficient 
is related to the Compton scattering cross section 
per electron, which we call σtotal, by the equation 

σtotal =	
µ 

(4) 
ne 

where ne is the number of electrons cm−3 of the 
material. To find µ from your data, you should 
fit an exponential directly to the data, determining 
the best-fit parameters and their errors. Alterna­
tively, you may plot the natural log of the measured 
values of I/I0 against x . Then determine the slope 
(and its error) of the straight line that best fits the 
data by linear regression. In either case, calculate 
the number of electrons cm−3 of scintillator (CH)n, 
and find σtotal. Compare to the classical Thomson 
calculation and to the theoretical result of Klein 
Nishina [12]. 

5.1. SUGGESTED THEORETICAL TOPICS 

1. Relativistic mechanics and the Compton shift. 

2. Derivation of the Thomson differential and total 
cross section for unpolarized photons. 

3. Discuss the ‘correct’ Klein-Nishina prediction. 
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FIG. 3: Schematic representation of Compton Scattering. 

APPENDIX A: DERIVATION OF THE

COMPTON SCATTERING FORMULA


Consider the interaction between a photon with mo­
mentum vector pγ (and zero rest mass) and an electron 
initially at rest with rest mass me as depicted in Figure 
3. Call p�

γ and p�
e the momenta of the photon and the 

electron after the interaction, respectively. By conserva­
tion of momentum, the relation between the initial and 
final momenta is 

pγ = p�
γ + p�

e (A1) 

Rearranging and squaring both sides we obtain 

2 pγ + p�γ 
2 − 2pγ · pγ

� = p�
e
2 (A2) 

The total relativistic energy E and momentum p of 
a particle are related to its rest mass m by the invari­
ant relation p pc2 − E2 = −m2c4 . By conservation of · 
energy, 

pγ + mec = p�γ + me
2c2 + p�e 

2 (A3) 

Rearranging and squaring both sides, we obtain 

2 2 2 2 pγ +p
�
γ 
2 −2pγ p

� +2mec(pγ −p� )+m c = m c 2+p�2 (A4)γ γ e e e 

Subtraction of (2) from (4) and rearrangement yields 

mec(pγ − p�γ ) = pγ p
�
γ − pγ · p�

γ (A5) 

Finally, dividing both sides by mecpγ p
�
γ , we obtain for 

the relation between the energies of the incident and the 
scattered photons the equation 

1 1 1 
Eγ
� − 

Eγ 
= 
mec2 

(1 − cos θ) (A6) 

where θ is the angle between their final momentum 
vectors. 
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APPENDIX B: INTRODUCTION TO TIMING 

A timing instrument marks or measures the precise 
occurrence of nuclear events. In practice, the release of 
electrons, which result from the detector’s absorption of 
a particle’s energy, occurs after the actual event; how 
long after is dependent upon the detector and how it is 
employed. The electronics processing this output further 
modifies its characteristics. All of these factors must be 
accounted for, in addition to the problem of noise, when 
making precise and highly resolved timing measurements. 

Sharp timing (2 τ overlap) reduces the number of ‘ac­
cidentals’. The primary limitations in this (and other) 
experiments is the time slew. A pulse of lower amplitude 
reaches the threshold of the discriminator later. The co­
incidence time has to be enlarged to ensure overlap with 
the other ‘normal’ (earlier) signal. The time slew is large 
because the rise time our amplifiers is ‘slow’. To over­
come timing inaccuracies from ‘slew’ and differing pulse 
shapes, the constant fraction technique is used. 

FIG. 4: Manipulation of input signal for constant fraction 
discrimination. 

Constant fraction timing involves the inversion, delay 
and recombination of the signal to create a zero crossing 
mark. However, rather than adding the inverted and de­
layed signal to the original to achieve cancellation, some 
fractional part of the original is used to insure baseline 
crossover. As is evident in Figure 4, the crossover point 
is independent of amplitude of the input signal. The con­
stant fraction discriminator (CFD) fixes its reference at 
this point. 

1. Constant Fraction Discrimination 

CFDs have an advantage over simple discriminators 
in experiments that require the detection of coincidences 
with high time resolution. A simple discriminator pro­
duces a logic output pulse that starts at some fixed time 
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after the voltage at the input rises above a set value. 
Therefore pulses of similar shape but different peak am­
plitudes trigger a simple discriminator at different times 
relative to the occurrence times of the events that gen­
erate the input pulses. A CFD also produces a logic 
output pulse if the voltage of the input pulse exceeds a 
set value; its special virtue is that the output pulse starts 
at a fixed time after the input pulse has risen to a cer­
tain constant fraction of its peak value, independent of 
the magnitude of that peak value. If the input pulses 
have a fixed shape, but different amplitudes, then the 
delay between the event that produces the input pulse 
and the logic output pulse from the CFD will be a con­
stant, which can be adjusted by the “WALK” control. 
The positive +5VDC outputs of the CFDs are fed to a 
coincidence circuit that produces a logic pulse when all 
of its enabled inputs see input pulses within the selected 
resolving time (user selectable within two ranges: “fast 
coincidence” 10-100ns or “slow coincidence” 100-1000ns). 
The output pulses from the coincidence circuit are fed 
to a gate generator and delay module, after which, the 
suitably stretched and delayed gate signal is sent to the 
“gate” input of the MCA. 

The amount of delay and the gate width in the delay 
module should be adjusted to meet the requirements of 
the coincident gate mode of the MCA. This requirement 
is that the gate pulse begin before the peak of the analog 
input signal and last for at least 0.5µsec beyond the peak. 
The coincidence gate requirement suppresses background 
events and makes the Compton scatter events stand out 
clearly in the resulting pulse height spectrum without the 
use of heavy shielding. 

APPENDIX C: SCINTILLATION COUNTER 
EFFICIENCY CALCULATIONS 

A significant complication in the analysis of the data 
on the differential cross section is the fact that the target 
is not “thin”, i.e. the mean free paths of the incident 
and scattered photons suffer substantial attenuation as 
it passes through the target material, and the scattered 
photons suffer substantial attenuation in their passage 
out of the target. The effects of these attenuations on 
the counting rate obviously depend on the position of 
the detector. account must therefore be taken of these 
thick target effects in order to derive accurate values of 
the differential cross section from the measured counting 
rates at various scattering angles. 

As in all cross section measurements, the necessarily fi­
nite sizes of source, target and detector introduce into the 
analysis geometrical factors that require laborious mul­
tidimensional integrations for their evaluations. In our 
experiment we have a divergent beam of photons from a 
radioactive source of finite size that can interact at var­
ious depths in the target within certain ranges of solid 
angle to produce scattered photons that traverse the de­
tector would be a convolution of the differential cross 

section with geometrical and attenuation factors repre­
sented by a multiple integral over at least ten variables 
with hideous limits of integration. the only practical way 
around this kind of mess in particle physics experiments 
where the highest possible precision is required is the 
“Monte Carlo” technique in which the sequence of phys­
ical processes from emission to detection is sampled by 
use of appropriate distribution functions to represent the 
various possible processes and random numbers to select 
the outcome of each process. 

Here we outline an approximate analytical treatment 
of our problem based on several simplifying assumptions. 
The formulation is suitable for numerical computation on 
a modest computer. We will consider only single scat­
tering events. We call R and H the radius and length, 
respectively, of the cylindrical scintillators which are the 
sensitive elements of the target and scatter cunters. We 
assume that the source is so far from the target scintil­
lator that the incident beam may be considered uniform 
and parallel (i.e unidirectional). We assume that the dis­
tance D of the scatter counter scintillator from the target 
is so large that the detected portion of the scattered radi­
ation may be considered to comprise a parallel (but not 
uniform) beam. 

Consider the scatterings that occur within a solid ele­
ment of volume rdφdrdz at a position in target scintilla­
tor with cylindrical coordinates r,φ,z. As can be deduced 
with the aid of Fig 5, the distance x of this element from 
the point of entry of the incident photons into the target 
scintillator is given by the expression 

2x = R{[1 − (q sin φ)2] 
1 − q cos φ} (C1) 

where q = r/R. Similarly, for photons scattered from the 
point P at the angle θ the distance y of the element from 
the point of exit is 

2y = R{[1 − (q sin ψ)2] 
1 − q cos ψ} (C2) 

FIG. 5: Diagram of the Compton scattering geometry. 

where ψ = π − θ + φ. We call α the total linear at­
tenuation coefficient (units of cm−1) of the target plastic 
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scintillator for the incident photons, β(θ) the total linear 
attenuation coefficient of the plastic for photons scat­
tered at angle θ, and γ(θ) the total linear attenuation 
coefficient of the scatter counter NaI scintillator for those 
scattered photons. The efficiency for detection of scat­
tering events that occur at a given position in the target 
scintillator is exp(−βy)[1 − exp(−γH)] which represents 
the probability that the scattered photon to escape from 
the target counter multiplied by the probability that the 
scattered photon interacts in the scatter counter. 

We must now find the average of this efficiency over 
the target scintillator. Recalling the assumption that the 
incident beam is parallel and uniform, the weighting fac­
tor is I0 exp(−αx) which is the intensity of the incident 
beam at the point of interaction inside the target scin­
tillator. We can now write for the average efficiency the 
expression 

exp(−αx) exp(−βy)[1 − exp(−γH)]dV 
η(θ) = � (C3)

exp(−αx)dV 

where the integrals are computed over the volume of the 
target scintillator. We note that η 1 as α 0,β 0.→ → →

The total attenuation coefficients are functions of the 
energy of the scattered photon and the energy of the 
scattered photon is a function of the scattering angle. 
According to the Compton theory, 

Eγ (θ) = 
1 + (E0/mc

E
2

0 

)(1 − cosθ) 
. (C4) 

In the energy range from 0.2 to 0.7 MeV the total at­
tenuation coefficient in sodium iodide can be fairly rep­
resented by the formula 

µ = 0.514( 
E 

)−0.368 + 5.51( 
E 

)−2.78 cm−1, 

100keV 

100keV 100keV 
(C5) 

and in plastic by the formula 

µ = 0.177( 
E 

)−0.37 cm−1. (C6) 

The quantity η can be evaluated as a function of θ by 
numerical integration. 
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