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Quantum wavefunctions
Rules of Quantum Mechanics

Quantum Mechanics of Particles

The QUANTUM WORLD is aSTRANGE PLACE!

Position of an object is not well-defined

Objects can tunnel through barriers

Energy, momentum, etc. becomediscretized

But quantum physics is crucial for energy processes

• Discrete quantum states⇒ entropy⇒ thermo⇒ limits to efficiency

• Nuclear processes: fission + fusion depend on tunneling

• Absorption of light by matter (atmosphere, photovoltaics, etc.):
depends on discrete quantum spectrum

This lecture:QM rapid immersion
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Quantum wavefunctions
Rules of Quantum Mechanics

Quantum Mechanics of Particles

Quantum wavefunctions

Classically, particles have positionx, momentump r���x p

In quantum mechanics, particles are described bywavefunctions

ψ(x)

Wavefunction obeys (time-dependent) Schrödinger wave equation

i~
∂

∂t
ψ(x, t) = − ~2

2m

[
∂2

∂x2
ψ(x, t) +

∂2

∂y2
ψ(x, t) +

∂2

∂z2
ψ(x, t) + V(x)ψ(x, t)

]

Why do we believe this wacky notion?

• Vast range of experiments over last 100 years

• Foundation of most of modern physics.
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Quantum wavefunctions
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Quantum Mechanics of Particles

2-slit experiment.Shoot particles through one or two slits at screen

Destructive + constructive interference⇒ particles are waves
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Quantum Mechanics of Particles

Many phenomena described by waves

frequency significance

light (EM) 1
c2
∂2

∂t2 E = ∇2E color

sound (pressure) 1
v2

s

∂2

∂t2 p = ∇2p pitch

QM (wavefunction) ∂
∂tψ = i~

2m∇
2ψ energy

Wave equation is linear:

ψ1(x, t) andψ2(x, t) solve⇒ linear combinationaψ1(x, t)+bψ2(x, t) solves

+ =

Exhibit constructive and destructive interference for phases in/out of sync.
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Quantum Mechanics of Particles

Violin string: ρ ∂
2

∂t2 Y(x, t) = T ∂2

∂x2 Y(x, t)

Solutions: sine modes Yn = cos(nω1t) sin(n · πL x) ωn = nω1

Y3 = cos(3ω1t) sin(3 · πL x) ω3 = 3ω1

Y2 = cos(2ω1t) sin(2 · πL x) ω2 = 2ω1

Y1 = cos(ω1t) sin(πL x) ω1 = π
L

q
T
ρ

• Modes–higher harmonics (n = 2,4,8, . . . up by octaves)
• ωn ∼ n (2∂/∂t’s, 2∂/∂x’s)
• Pluck string – get superposition (linear combination) of modes

Quantum particlein a 1D box:i~ ∂
∂tψ(x, t) = − ~2

2m
∂2

∂x2ψ(x, t)

Sine modes again ψn = e−iEnt/~ sin(n · πL x) En = n2~ω1

· · · · · ·
ψ2 = e−iE2t/~ sin(2 · πL x) E2 = 4~ω1

ψ1 = e−iE1t/~ sin(πL x) E1 = ~ω1 = π2~2

2mL2

• Each mode – state of fixed energy
• En ∼ n2 (1∂/∂t, 2∂/∂x’s)
• General state – superposition (linear combination) of modes
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Quantum Mechanics of Particles

Quantum wavefunctions are complex – Review of complex numbers

Definei2 = −1

Complex number:z = x + iy

Often writez = reiθ = r(cosθ + i sinθ)
r = magnitude, θ = phase

Useful properties of complex numbers:

Addition: (x + iy) + (a + ib) = (x + a) + i(y + b)

Multiplication: (x + iy)× (a + ib) = (xa− yb) + i(ya+ xb)
(reiθ)(seiψ) = rsei(θ+ψ)

Complex conjugation:̄z = z∗ = x− iy

Norm: |z| =
√

x2 + y2, |reiθ| = r, |z|2 = z̄z = r2
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Quantum Mechanics of Particles

General quantum wavefunction

Quantum particle has “energy basis” spatial wavefunctionsψi(x)
ψi(x) have fixed energiesEi

General (time-dependent) state is superposition

ψ(x, t) = a1e−iE1t/~ψ1(x) + a2e−iE2t/~ψ2(x) + · · ·

For macroscopic(classical) systems, combine many quantum states

• Destructive interferenceoutside small region⇒ classical localization

• Wavefunction nonzero through classical barriers⇒ tunneling

• For micro systems (e.g.atoms) individual quantum states relevant.
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Quantum Mechanics of Particles

Rules of Quantum Mechanics: 4 Axioms

Energy in quantum mechanics

Axiom 1: Any finite/physical quantum system has a discrete set of
“energy basis states”, which we denotes1, s2, . . . , sN.
These states have values of energyE1,E2, . . . ,EN.

Example: hydrogen atom

0 · · ·
E11−26

∼= ε0/9 (3s,p,d)
E3−10

∼= ε0/4 (2s,p)

[ε0
∼= -13.6 eV]

E1,2
∼= ε0 (1s)

Example: semiconductor

��
@R

bands 6?band gap

• important for photovoltaics

• Values ofE: “spectrum”

• Physicists’ job: compute spectrum of physical systems
— Often deal with∞ state approximation
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Quantum Mechanics of Particles

Simplest quantum system:“Qubit” = 2-state system(electron spin)

Earth spins

Classically anyω seems ok

⇒ anyL,Erot

Electron spins

or

Lz = ± 1
2~

• 2 states

• ~ ∼= 1.0546× 10−34 Js
–fundamental quantum unit

Electron in magnetic fieldB = B̂z Confirmed by experiment

E = −B · µ = µ̃BLz

E± = ±µ̃B~/2
666666 666|+〉 |−〉

B

S

N
|+〉

|−〉
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Quantum Mechanics of Particles

Axiom 2: The state of a quantum system at any point in time is a linear
combination (“quantum superposition”) of basis states

|s〉 = z1|s1〉+ z2|s2〉+ · · ·+ zn|sn〉

• Can think of like a vector:r = x̂i + ŷj + ẑk

• Convention: unit normalization|z1|2 + |z2|2 + · · ·+ |zn|2 = 1

What does a quantum superposition mean?

Axiom 3: If you measure the system’s energy (assumeEi distinct)

probability(E = Ei) = |zi |2, after measurement state⇒ si

Example:
1√
2
|+〉+ 1√

2
|−〉

S

N
|+〉, prob = 1/2

|−〉, prob = 1/2
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Quantum Mechanics of Particles

Puzzle: If measurements give random results, how is E conserved?

Example:2 separated electrons in B field, totalE = 0

state 1:|+−〉
666666 666|+〉 |−〉

B

state 2:|−+〉
666666 666|−〉 |+〉

B

Both states:E = E+ + E− = 0

Assume system in state1√
2
|+−〉+ 1√

2
|−+〉

Measure spin of first particle

50%: Particle 1 in state|+〉: system in state 1,E1 = E+,E2 = E−

50%: Particle 1 in state|−〉: system in state 2,E1 = E−,E2 = E+

BUT TOTAL ENERGY IS CONSERVED!
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Quantum Mechanics of Particles

Time Dependence

Axiom 4: If at time t0 a state|s(t0)〉 has definite energyE
then at timet the state is

|s(t)〉 = e−iE(t−t0)/~|s(t0)〉 [ ⇒ ]

Time evolution is linear in|s〉, so if

|s(t0)〉 = z1|s1〉+ · · ·+ zn|sn〉

then|s(t)〉 = z1e−iE1(t−t0)/~|s1〉+ · · ·+ zne−iEn(t−t0)/~|sn〉

Note: only phase changes for definite E state!ddt |s(t)〉 = − i
~E|s(t)〉

Matrix notation |s(t0)〉 =

 z1
...
zn

 H =


E1 0 · · · 0
0 E2 0

...
0 0 En


⇒ Schr̈odinger equationd

dt |s(t)〉 = − i
~H|s(t)〉
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Quantum Mechanics of Particles

SUMMARY: axioms of quantum mechanics

1. Any physical system has a discrete set of E basis states|si〉

2. General state is linear combinationz1|s1〉+ · · ·+ zn|sn〉

3. Measurement: probability =|zi |2 that state→ |si〉

4. Time development linear,|si〉 → e−iEi(t−t0)/~|si〉

• All of QM, QFT essentially elaboration on principles 1-4 + symmetry,
developing tools for calculations in particular cases

• Often work in another basis (not E basis)

• A primary problem: given system, determine spectrum
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Quantum Mechanics of Particles

Particle states described by wavefunctions

ψ(x) |ψ(x)|2

A
AK

Like superposition of states in fixed positions,|ψ(x)|2 = prob. @x

Think of as limit of discrete “position basis”

x1 x2 x3 x4 x5
→

|ψ〉 =
∑

j ψj |xj〉 → ψ(x)

∑
j |ψj |2 = 1 →

∫
|ψ(x)|2dx = 1
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Quantum Mechanics of Particles

What are energy basis states (|s〉’s) for free particle?

Translate⇒ same Energy:ψ(x + δ) = eiθδψ(x)

• Plane wave statesψp(x) = eipx/~ p = momentum!

• Matches experimental observation (Davisson-Germer, 1927):

de Broglie wavelength of matterλ = h/p (eipx/~ = e2πix/λ)

• Energy:E = p2

2m Schr̈odinger equation:

Epψp(x) =
p2

2m
ψp(x) = − ~2

2m
∂2

∂x2
ψp(x) = Hψp(x)

Time-dependent Schrödinger eq.:i~ ∂
∂tψ(x, t) = Hψ = − ~2

2m
∂2

∂x2ψ(x, t)
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Quantum Mechanics of Particles

Back to particle in a (1D) box

Time-independent Schrödinger equation:

Hψ(x) = − ~2

2m
∂2

∂x2
ψ(x) = Eψ(x)

Boundary Conditions:ψ(0) = ψ(L) = 0

Solution:Combination ofeipx/~,e−ipx/~

Energy basis states|n〉: ψn = sinπnx/L

En =
~2π2n2

2mL2

E1 = ε
E2 = 4ε

E3 = 9ε

E4 = 16ε

E5 = 25ε

E6 = 36ε

Spectrum (ε = ~2π2n2/2mL2)
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Quantum Mechanics of Particles

Even more useful model: 1D Simple Harmonic Oscillator (SHO)

V(x) = 1
2kx2

��	

Hψ(x) =
[
− ~2

2m
∂2

∂x2
+

1
2

kx2

]
ψ(x) = Eψ(x)

Boundary Conditions:ψ(|x| → ∞) = 0

Solution:[ω =
√

k/m]

|0〉 : ψ0 = C0e−
mω
2~ x2

|1〉 : ψ1 = C1xe−
mω
2~ x2

|2〉 : ψ2 = C2( 2mω
~ x2 − 1)e−

mω
2~ x2

· · ·

E0 = 1
2~ω

E1 = 11
2~ω

E2 = 21
2~ω

E3 = 31
2~ω

E4 = 41
2~ω

E5 = 51
2~ω

...

Spectrum (En = (n + 1/2)~ω)

[Analytic solution; many approaches, one in notes]
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Quantum Mechanics of Particles

Hydrogen-like atom (now in 3D, assumemp � me)

[wikimedia]

Hψ(x) =
[
− ~2

2m
∇2 − e2

4πε0r

]
ψ(x) = Eψ(x)

Solutions:
ψ1s = C1s× (a0)−3/2e−r/a0

ψ2s = C2s× (a0)−3/2e−r/a0(1− r/2a0)
ψ2p = C2p× (a0)−3/2e−r/a0

( x,y,z
r

)
· · ·
where Bohr radius isa0 = ~2

me2 4πε0 ≈ 0.52Å

0

E1
∼= −13.6 eV

E2
∼= −13.6 eV/4

E3
∼= −13.6 eV/9
· · ·

Spectrum

(En = −e2

4πε0a0n2
∼= −13.6 eV

n2 )
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Quantum Mechanics of Particles

How does quantum state⇒ classical physics?

Consider particle in potential

Sum of energy basis states⇒ “localized wave packet”

Time evolution under Schrödinger equatioṅψ(t) = −i
~ Hψ(t)

⇒ Packet follows classical laws

Define

〈x〉ψ(t) =
∫

dx x|ψ(x, t)|2

〈p〉ψ(t) =
∑

p

ψ̄pψpp = −i~
∫

dx ψ̄(x, t)
∂

∂x
ψ(x, t) .

Can show

d
dt
〈x〉ψ(t) =

1
m
〈p〉ψ(t)

m
d2

dt2
〈x〉ψ(t) =

d
dt
〈p〉ψ(t) = −〈 ∂

∂x
V(x)〉ψ(t)
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Quantum Mechanics of Particles

SUMMARY of QM

• Quantum particles described by wavefunction

• Any quantum system: basis of states w/ fixed energy (A1)
General state linear combination (superposition) of energy basis (A2)

• Quantum particles: forV = 0, eipx/~ has momentump,E = p2/2m

• Energy basis states with potentialV : Hψ =
[
− ~2

2m
∂2

∂x2 + V
]
ψ = Eψ

• Box spectrum:En = ~2π2n2/2mL2,n = 1,2, . . .

• SHO spectrum:En = (n + 1/2)~ω,n = 0,1, . . .

• Time-dependent Schrödinger eq.ψ̇(t) = −i
~ Hψ(t) [E ∝ frequency] (A4)
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