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The QUANTUM WORLD is aSTRANGE PLACE!

\/\/\\/\, Position of an object is not well-defined

\‘/\/ Objects can tunnel through barriers

@ Energy, momentum, etc. becomcretized

But quantum physics is crucial for energy processes
e Discrete quantum states entropy=- thermo=- limits to efficiency
o Nuclear processes: fission + fusion depend on tunneling

e Absorption of light by matter (atmosphere, photovoltaics, etc.):
depends on discrete quantum spectrum

This lecture:QM rapid immersion
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Quantum wavefunctions

Quantum wavefunctions

Classically, particles have positiGnmomentunp A’ P

In quantum mechanics, particles are described/adyefunctions

»(X)

Wavefunction obeys (time-dependent) Siatinger wave equation

.0 n? [ 0? 0? 0?
|ha¢(><,t) = 7% ﬁi/f(xﬂ) + 87)/211)()(7 t) + @#’(Xv t) + V(X)w(xat)

Why do we believe this wacky notion?
e Vast range of experiments over last 100 years

e Foundation of most of modern physics.
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Quantum wavefunctions

2-slit experimentShoot particles through one or two slits at screen

L

Destructive + constructive interferenee particles are waves
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Quantum wavefunctions

Many phenomena described by waves

frequency significance
light (EM) L2E=VE color
sound (pressure) Vlgg—;p =V? pitch
QM (wavefunction) 2y = V2 energy

Wave equation is linear:

(X, 1) andia(X, t) solve=- linear combinatioray (X, t) + biy»(x, t) solves

Exhibit constructive and destructive interference for phases in/out of sync.



Quantum wavefunctions

Violin string: pg—;Y( t) = Tasz(x t)

Solutions: sine modes  Yn = cognwit)sin(n- {X) wn = Nw
2% Yz = cog3wit) sin(3- IX) ws = 3w;
/s 5 Yz = cog2wit) Sin(2- TX)  wp = 2w

Y1 = COiwlt) Si ( ) w1 = % %
e Modes—higher harmonica & 2,4, 8, . .. up by octaves)
e wy ~ N (20/0t’s, 20/9X's)
e Pluck string — get superposition (linear combination) of modes

Quantum particléen a 1D box:ih%wx, t) = —?T;aa—;w(x, t)
Sine modes again o = e Et/ B sin(n - TX)  En= N2hw,
% Yo = e B/ hsin2. Ix) B = dhw,
Yy = e"B/hsin(Tx) E1 = hw = 20

e Each mode - state of fixed energy
e E, ~ n? (10/8t, 20/0X’s)
e General state — superposition (linear combination) of modes
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Quantum wavefunctions

Quantum wavefunctions are complex — Review of complex numbers

Definei? = —1
Complex numberz = x + iy

Often writez = re'? = r(cosf + i sinf)
r = magnituded = phase

Useful properties of complex numbers:
Addition: (x+iy) + (a+1ib) = (x+a) +i(y+b)

Multiplication: (x + iy) x (a+ ib) = (xa— yb) + i(ya+ xb)
(re'?)(se?) = rsd(?+¥)

Complex conjugationz = z* = x — iy
Norm: |z| = \/x2 +y2, [r€l| =1, |2?=z=1?



Quantum wavefunctions

General quantum wavefunction

Quantum particle has “energy basis” spatial wavefunctigis)
¥i(X) have fixed energies;

General (time-dependent) state is superposition

iExt/h

(X, t) = age E/ gy (X) + age ER Ppy(x) + - - -

For macroscopidclassical) systems, combine many quantum states

e Destructive interferenceutside small regiors classical localization

AN

o Wavefunction nonzero through classical barriersunneling

e For micro systemsg(g.atoms) individual quantum states relevant.
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Rules of Quantum Mechanics

Rules of Quantum Mechanics: 4 Axioms

Energy in quantum mechanics

Axiom 1: Any finite/physical quantum system has a discrete set of
“energy basis states”, which we denstes,, . . ., Sn.
These states have values of enelfgyE,, . . . , Ey.

Example: hydrogen atom Example: semiconductor

o -
Ei1 26 = €0/9 (3s,p,d)
Es-0= e/ (25p) bands< 4 band gap
[e0 =2 -13.6 eV]
Bi2 = <o e ¢ important for photovoltaics

e Values ofE: “spectruri

e Physicists’ job: compute spectrum of physical systems
— Often deal withoo state approximation

8.21 Lecture 6: Quantum Mechanics | 9/21



Rules of Quantum Mechanics

Simplest quantum systerfQubit” = 2-state systenfelectron spin)

Earth spins Electron spins
<oy or o
L, =+in
_ e 2 states
Classically anyv seems ok o/~ 10546x 10-3 Js
= anyL, Er —fundamental quantum unit
Electron in magnetic fiel8 = Bz Confirmed by experiment

E=-B-u=jBL

Y TE . o

E. = +/iBh/2
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Rules of Quantum Mechanics

Axiom 2: The state of a quantum system at any point in time is a linear
combination (“quantum superposition”) of basis states

|s) = z1ls1) + 22[S2) + -+ - + ZalShn)

e Can think of like a vectorr = xi + yj + zk

e Convention: unit normalizatiofzy |> + |z|? + - - - + |z,]? =

What does a quantum superposition mean?

Axiom 3: If you measure the system’s energy (assugnéistinct)
probability E = E;) = |z|?, after measurement state s

Example: ), prob = 1/2
I+ 551-) ﬁl ﬁl ﬂl M NSI( ), prob =1/2
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Rules of Quantum Mechanics

/\ Puzzle: If measurements give random results, how is E conserved?

Example:2 separated electrons in B field, toEal= 0

Qi Rty

state 1:|+—) state 2:|—+)

Both statesE=E, +E_ =0

Assume system in statés|+—) + 35| —+)

Measure spin of first particle

50%: Particle 1 in statet+): systemin state E; = E, ,E; = E_
50%: Particle 1 in statp-): systemin state Z; = E_,E, = E;
BUT TOTAL ENERGY IS CONSERVED!
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Rules of Quantum Mechanics

Time Dependence

Axiom 4: If at time ty a statgs(tp)) has definite energh
then at time the state is

|s(t) =e FEOMs(te))  [(5 = (D]
Time evolution is linear ins), so if

S(to)) = za[s1) + - - - + Zn|Sh)

then|s(t)) = ze E1t=0)/7|g)) 1 ... 4 z, @ Enlt-t)/7|g))

Note: only phase changes for definite E statél|s(t)) = —+E|s(t))

7 E; 0 - 0
. . ! 0 B 0

/\ Matrix notation  |s(tg)) = | H=
% 0 o Ex

= Schiddinger equatior|s(t)) = —+H|s(t))



Rules of Quantum Mechanics

SUMMARY: axioms of quantum mechanics

1. Any physical system has a discrete set of E basis dtates
2. General state is linear combinatipns;) + - - - + zy|sn)
3. Measurement: probability z|? that state— |s;)

4. Time development lineals) — e E(t-t)/|g)

o All of QM, QFT essentially elaboration on principles 1-4 + symmetry,
developing tools for calculations in particular cases

Y r
g /7 xe¥eoso
N / 4y
\ ,// 7

o Often work in another basis (not E basi

e A primary problem: given system, determine spectrum
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Quantum Mechanics of Particles

Particle states described by wavefunctions

$(x)

Like superposition of states in fixed positiofg(x)|? = prob. @x

Think of as limit of discrete “position basis”

X1 X X3 Xg Xs -
) =37, ¥il%) — ¥(X)
Slwt=1 — [ePdx=1
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Quantum Mechanics of Particles

What are energy basis stat¢s's) for free particle?

Translate=- same Energy(x + §) = €991)(x)

e Plane wave stateg,(x) = €”/"  p=momentum!

e Matches experimental observation (Davisson-Germer, 1927):
de Broglie wavelength of matter= h/p (€P¥/" = &7*/})

e Energy:E = Zp; Schibdinger equation:

P R 9?2
Eptp(X) = ?nwp(x) = —%W’wp(x) = Hp(X)

Time-dependent Schdinger eq.in &y (x,t) = Hy = 12 0% (X, 1)

T 2maxe
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Quantum Mechanics of Particles

Back to particle in a (1D) box

Eg = 36¢
Time-independent Schdinger equation:
HU00 = o O 400 = Evt —E-&
T T omee VY T Y
.. E3 = 9F
Boundary Conditionsy(0) = ¢(L) =0
E2 = 4e

Solution: Combination ofegPX/ g~ iPx/h — B =

Energy basis statgn): = sinwnx/L
¥ 98): v / Spectrum € = h?7n?/2mL?)

- h2ﬂ_2n2
" 2mLz2
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Quantum Mechanics of Particles

Even more useful model: 1D Simple Harmonic Oscillator (SHO)

E5 = S%flw
V(x) = 1k
R 0% 1 ) Es = 3%hw
. E2 = Zlflw'
Boundary Conditionsy(|x| — oc0) =0 2
Solution: [w = +/k/m| Ei= 137w
|0) : wozcoef%x: Eo = /w
1) : ¢y = Cixe™ X
12) 1y = Cy(Emex — 1)e BX SpectrumE, = (n+ 1/2)hw)

[Analytic solution; many approaches, one in notes]



Quantum Mechanics of Particles

Hydrogen-like atom (now in 3D, assumg > me)

—— E3 = -136eV/9
E, >~ -136eV/4
[wikimedia]
s P, €1
HU() = |~ V2 = 2 |00 = EV(X)
E; = -136eV
Solutions:
115 = C1s x (a0)~%/2e7"/% Spectrum
thas = Cas x (80)~¥/%e7"/®(1 —r /2a) (E, = -~ —136 evy
tap = Cap x (20) /% /% (X)) "= e S

where Bohr radius isg = mh—;47reo ~ 0.52A
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Quantum Mechanics of Particles

How does quantum state classical physics?

Consider particle in potential

Sum of energy basis states “localized wave packet”
Time evolution under Scbdinger equation)(t) = ZHy(t)

= Packet follows classical laws

A o = [P
Define B B P
By = X dutep = —in [ Sed(ehTix D).
p

d 1
at Xy = = Pyt
Can show P
d d 0
Mz Xy = Et(P)w(t) = —<&V(X)>¢(t)

v
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SUMMARY of QM

e Quantum particles described by wavefunction

e Any quantum system: basis of states w/ fixed energy (A1)
General state linear combination (superposition) of energy basis (A2)

e Quantum particles: fov = 0, €™/ has momenturp, E = p?/2m

. . . FLZ 82
e Energy basis states with potential Hy) = {_%W I V} Y =Ey
e Box spectrumE, = h?r?n?/2mL2,n=1,2,...

e SHO spectrumE, = (n+1/2)hw,n=0,1,...

e Time-dependent Schdinger eqzz}(t) = %Hw(t) [E o frequency] (A4)
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