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INTRODUCTION 
Chapter 2 of EBH presented the first Big Idea of the text: the metric that relates wristwatch 
time between two events to the incremental change in coordinates between those two events. 
Chapter 3 employs the second Big Idea: the Principle of Maximal Aging. Remember the twin 
paradox? The twin who relaxes at home ages more than the twin who streaks to a distant star 
and returns. Nature commands the free stone: Follow the path of maximal aging. In an inertial 
frame the path of maximal aging is a straight worldline. And it is true in general relativity. 
Why? Because in general relativity you can always find a local inertial frame in which the 
free stone is currently moving. And in that local inertial frame special relativity applies. So 
the special relativity command "Follow a straight worldline in an inertial frame." becomes 
the general relativity command "Follow a straight worldline in a local inertial frame." One big 
job of general relativity is to patch together local inertial frames to describe curved 
spacetime. In the patched-together spacetime of general relativity, the Principle of Maximal 
Aging summarizes Nature's command to the stone. 

This week we apply the two Big Ideas to predict the motion of a stone as it plunges radially 
toward a black hole. The main result is a new expression for the total energy of the stone. We 
use this expression for energy to predict the changing values of velocity of our plunging 
stone as measured in different reference frames. One striking prediction: The far-away 
bookkeeper concludes that the stone slows down as it approaches the horizon, coasting to rest 
at the horizon over an unlimited far-away time. In contrast, the plunging observer riding on 
the stone zips through the horizon, streaks ever downward inside the horizon, and is tidally 
squeezed and pulled into spaghetti near the crunch-point at the center of the black hole. 
Weird? Welcome to general relativity! 

Thorne fills in the human and historical background of our tale: The almost irrational 
resistance of Einstein and others to the idea of a black hole; the prediction by a nineteen-year-
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old Indian Subrahmanyan Chandrasekhar (for whom the current orbiting Chandra X-ray 
observatory is named) that a white dwarf cannot sustain itself against the pull of gravity if its 
mass is greater than about 1.4 times the mass of our Sun; the public humiliation of 
Chandrasekhar by the eminent astrophysicist Sir Arthur Eddington, resulting in 
Chandrasekhar’s retreat from the study of black holes for three decades, during which others 
took up the task. 

READINGS 
Exploring Black Holes: Chapter 3, Plunging

AND

Thorne: Chapter 3, Black Holes Discovered and Rejected

AND

Thorne: Chapter 4, The Mystery of the White Dwarfs

AND

Sections 1 and 2 of the handout "How Gravitational Forces Arise from Curvature."

OPTIONAL

The homework exercises refer to pages B-12 thru B-14 of Project B, Inside the Black Hole in

EBH. You may want to "read around" these pages to master the context.


EVENING SEMINAR 
Speaker: Prof. Edmund Bertschinger will talk on The Einstein Field Equations. 

PROJECTS 
During this week go through the project previews on the discussion board, including any 
comments and suggestions that have been added. Email any authors of the proposals (email 
addresses on the class list) for further details. By end of week #4, send an email to instructors 
listing in order (first, second, third) your choices for a project among those previewed. 
The project you wrote up yourself may be, but does NOT have to be, one of those on 
your choice list. The instructors will assign teams to the various project byend of week #5. 

RECITATION 
Lyman Page will talk to us about the MAP project. 

At least one of the following questions will appear on the recitation quiz this week. 

1. Start with a white dwarf that gradually steals matter from an orbiting companion. 
Describe the sequence of structures that result, including the approximate radius and 
mass of each. Which of these structures were unknown to the young Chandrasekhar? 

2. What "physical impossibilities" did Einstein invoke to disprove the possible 	existence 
of a black hole? Were Einstein's predictions about these physical impossibilities 
correct? What was wrong with his arguments? 

3. An observer riding inside a freely-falling small capsule approaches the horizon of a 
spherical black hole of mass one million times the mass of our Sun. Which of the 
following statements are true as she crosses the horizon? EXPLAIN your choice. 
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(a) She will experience a sudden jolt. (b) The numerical value of the speed of light she 
measures inside her capsule will differ from the c measured far from the black hole. 
(c) She will be crushed at the center simultaneously with crossing the horizon as 
recorded on her clock. (d) She will not be able to tell, from experiments inside the 
capsule, when she crosses the horizon. 

4. The observer described in question 3 is now inside the horizon. Which of the following 
statements are true? EXPLAIN your choice. (e) Looking out through the transparent 
capsule, she will not be able to see any distant stars. (f) She will not be able to receive 
email from her friends outside the horizon. (g) The plunger's friends, looking inward 
from a great distance, will see her being crushed at the center of the black hole. (h) The 
plunger will NOT be able to see the crunch point ahead of her as she approaches it. 

PROBLEM SET 
Due before end of week #4. 

EXERCISE 1. PLUNGING FROM REST AT INFINITY 
This is a modification of Exercise 1, page 3-28 of Exploring Black Holes.

Black hole Alpha has a mass M = 8 kilometers and a horizon radius of 2M = 16 kilometers. A

stone starting from rest at a great distance falls radially into black hole Alpha. In the

following consider all speeds to be positive and express these speeds as a decimal fraction of

the speed of light.


A  What is the speed of the stone measured by the shell observer at r = 50 kilometers as 
the stone passes the shell observer? 

B  What is the bookkeeper speed of the stone as it passes r = 50 kilometers? 

C  What is the speed of the stone measured by the shell observer at r = 30 kilometers as 
the stone passes the shell observer? 

D  What is the bookkeeper speed of the stone as it passes r = 30 kilometers? 

E  In a two or three sentences, explain why the speed change in parts A and C reckoned 
by the bookkeeper as the stone moves inward is qualitatively different from the 
speed change in parts B and D measured by shell observers at smaller radii. 

EXERCISE 2. ENERGY CONVERSION USING A BLACK HOLE 
This is a modification of Exercise 6, page 3-29 of Exploring Black Holes. 
PLEASE READ that exercise before attempting this one. 

NOTE that a shell observer can use special relativity to compute the kinetic energy of a 

particle of mass m that passes his shell with velocity that he measures to be vshell . 

Black hole Beta has a mass M = 10 kilometers and a horizon at 2M = 20 kilometers. A bag of 
garbage of mass m starts from rest at a power station that is a great distance from the black 
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hole. This bag of garbage falls radially onto a shell of radius (reduced circumference) r = 30 
kilometers. This shell has a machine that converts all of the kinetic energy of the incoming 
garbage into a light flash. 

A What is the energy, measured by the shell observer at r = 30 kilometers, of the 
photons produced by this machine as a fraction of the rest energy m of the garbage? 

B  The machine now directs the resulting flash of light radially outward. What is the 
energy of this flash as it arrives back at the power station, energy expressed as a 
fraction of the original rest energy m of the garbage? 

C Now the garbage (which was brought to rest at r = 30 kilometers when its kinetic 
energy was converted to photons) is released from the shell at radius r and falls into 
the black hole. What is the increase in mass of the black hole, expressed as a fraction 
of the original rest energy m of the garbage? 

D What is the fractional efficiency of this energy converter, that is (energy output minus 
energy input)/(energy input)? 

Advice: Check your answers by looking for possible conservation relations among your

numerical results in this exercise.


EXERCISE 3. HITTING A NEUTRON STAR

This exercise is a major revision of exercise 3, page 3-28 in Chapter 3 of Exploring Black Holes.


A particular nonrotating neutron star has a mass M = 1.35 times the mass of Sun and a radius

of 10 kilometers. A stone starting from rest at a great distance falls onto the surface of this

neutron star. Express all speeds as decimal fractions of the speed of light, and consider all

speeds to be positive.


A If this neutron star were a black hole with the same mass, what would be the 
r-value of its horizon in kilometers? 

B With what speed does the stone hit the surface of the neutron star as measured by 
someone standing on the surface? 

C  With what speed does the stone hit the surface of the neutron star according to the 
far-away bookkeeper? 

Several years ago, it was thought that astronomical gamma-ray bursts might be caused by 
stones (asteroids) impacting neutron stars. Carry out a preliminary analysis of this 
hypothesis by assuming that the stone is made of iron. The observer standing on the surface 
of the neutron star (as the shell observer, Section 6, page 3-17 of EBH) can use special 
relativity to calculate the kinetic energy of impact. The impact kinetic energy is very much 
greater than the binding energy of iron atoms in the stone, greater than the energy needed to 
completely remove all 26 electrons from each iron atom, and greater even than the energy 
needed to shatter the iron nucleus into its component 26 protons and 30 neutrons. So we 
neglect all these binding energies in our estimate. The result is a vaporized gas of 26 electrons 
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and 56 nucleons (protons and neutrons). We want to find the average energy of photons 
(gamma rays) emitted by this gas. 

D Explain in a few brief sentences why, just after impact, the electrons have very much 
less kinetic energy than the nucleons. So in what follows we neglect the initial kinetic 
energy of the electron gas just after impact. 

E Very quickly the nucleons share their kinetic energy with the electrons. Assume that 
both the proton and the neutron have the rest energy (mass) 1 GeV. Estimate the 
temperature in MeV (= 2/3 times the average kinetic energy per particle in MeV) of 
the electron-nucleon gas (“plasma”). 

F The hot gas emits thermal radiation with characteristic photon energy approximately 
equal to the temperature. What is the characteristic energy of photons reaching a 
distant observer, in MeV? 

NOTE: It is now known that astronomical gamma-ray bursts release much more energy than 
an asteroid falling onto a neutron star. Gamma ray bursts are now thought to arise from the 
birth of black holes in distant galaxies. 

EXERCISE 4. THE PLUNGER 
An observer falls from rest starting a great distance from a black hole. Call this observer the 
plunger. The plunger falls past two shells an incremental reduced circumference dr apart at 
a radius r. 

A  How far apart drshell are these two shells as measured by a shell observer? 

B The shell observer and the plunger can use special relativity to transform observed 

distances and times between them. How far apart drplunge the shells are as 
measured by the plunger? 

C How long dtshell as measured by the shell observer does it take the plunger to fall 
between these two shells? 

D 	 How long dtplunge as measured by the plunger does it take for the two shells to pass 
her? 

E What is the speed drplunge/dtplunge at which the plunger measures the shells to be 

passing her? Compare this speed with the speed drshell/dtshell of the passing 
plunger as measured by the shell observer. Account for the similarity of or difference 
between these two expressions for speed. 

EXERCSE 5. CAN THE BOOKKEEPER BE A REAL OBSERVER? 
NOTE ON UNITS: The supplementary notes by Bertschinger set c = 1 but carry the constant 
G along. G does not appear in the metrics in EBH, for reasons explained in Section 6 of 
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Chapter 2. To make things simple, just set G = 1 in Bertschinger's notes for purposes of 
solving the exercises in this assignment. 

Bertschinger's notes stress that bookkeeper coordinates, those that appear on the RIGHT side 
of the metric, can be entirely arbitrary, are often chosen for convenience of calculation, and 
need not represent distances or times recorded by any observer. In contrast, distance and 
time measured by an observer appear on the LEFT side of the metric: proper time dτ and 
proper distance ds (called dσ  in EBH) between two nearby events. 

Nevertheless, it is fair to ask for any set of bookkeeper coordinates: Is there an observer 
whose clock reads bookkeeper time? The answer is "sometimes." In this exercise you will 
answer this question for two different cases: Schwarzschild time and rain time. In both cases 
use the truncated metric for motion in a plane (θ = π/2). 

A. Schwarzschild bookkeeper time.  Is there an observer whose clock reads Schwarzschild 
bookkeeper time? Answer this question by setting dτ = dt in the Schwarzschild metric. Is 
there a location of a stationary clock (dr = dφ = 0) such that the resulting equation is valid? 
How does this result square with the analysis of bookkeeper time in Chapter 2 of EBH? 

B. Bookkeeper rain time. (References: Section 5 of the second set of Notes, "Gravity, Metrics 
and Coordinates" and EBH pages B-12 to B-14) Is there an observer whose clock reads rain 
time? Answer this question by setting dτ = dt in the rain metric (equation 21 of the Notes). Is 
there a location of a stationary clock (dr = dφ = 0) such that the resulting equation is valid? Is 

there a radial velocity dr/dtrain such that the equation is valid? There is a velocity equation in 
Chapter 3 that has the same form. What is the physical relation between these two 
expressions for velocity? What is the relation between the rain observer and the plunger in 
Exercise 4 above? 

EXERCISE 6. ONE WAY MOTION INSIDE THE HORIZON 
Answer the questions in QUERY 9 on page B-14 of EBH Project B Inside the Black Hole. In 
particular (part E) make a decisive argument showing that ANY object launched in the 
radially outward direction from a raindrop inside the horizon nevertheless moves with 
decreasing radius r. 

EXERCISE 7. LAGRANGIAN MECHANICS 
Classical (nonrelativistic) mechanics uses the Euler-Lagrange equation with integrand 
f (x, &; t )= T − U  where T is the kinetic energy and U is the potential energy of a particle with 

position x and speed & . In mechanics, the function T – U is called the Lagrangian. 

A.	 Using U = m ΦN(x,y,z) and the appropriate expression for T in Cartesian coordinates 
(x,y,z), show that the Euler-Lagrange equation is identical to the usual form of 
Newton’s laws. Assume three dimensions of space. 

B.	 Use the metric of flat spacetime in spherical coordinates to write v 2 in terms of dr/dt 
and dφ/dt for a particle moving in the two-dimensional equatorial plane θ = π/2. 
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C.	  Rewriting T in spherical coordinates and assuming that ΦN = ΦN(r) depends only on r, 
use the Euler-Lagrange equations to obtain differential equations for r(t) and φ(t). 
Identify the orbital angular momentum and show that it does not change with time. 
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