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8.251 – Homework 4


B. Zwiebach  Spring 2007 

Due Wednesday, March 7. 

1. (10 points) Problem 5.6 

2. (15 points) Point particle action in curved space.


(This problem is an elaboration of Problem 5.7 in the textbook.)


In Section 3.6 we considered the invariant interval ds2 = −gµν (x)dxµdxν in a curved space with 

metric gµν (x). The motion of a point particle of mass m on curved space is studied using the 
action � 

S = −mc ds . 

(a) Show that the equation of motion takes the form 

d dxµ 1 ∂gµν dxµ dxν 

ds 
gρµ 

ds 
=
2 ∂xρ ds ds

. 

This equation of motion is called the geodesic equation. Although the action is simple, the 
geodesic equation is nonetheless rather nontrivial. However, if the metric is constant, as in 

special relativity, then the right-hand side of the above equation vanishes, and we recover the 
familiar equation of motion of a free point particle. 

(b) Another form of the geodesic equation can be found by expanding the derivative on the 
left-hand side, and then manipulating the result until one obtains an equation for d2xλ/ds2 . 
Show that this equation can be written as 

d2xλ dxµ dxν 

+ Γλ = 0  ,
ds2 µν ds ds 

where � � 

Γλ 1 λσ ∂gσµ ∂gσν ∂gµν 
µν = g + − .

2 ∂xν ∂xµ ∂xσ 

The Christoffel coefficients Γ are symmetric in the lower indices Γλ = Γλ , and they vanish if µν νµ

the metric is constant. 

3. (10 points) Schwarz inequality in R1,1 . 

Consider a two-dimensional vector space V with a constant metric such that there is a spacelike 
vector s′ (s′2 = s′ · s′ > 0) and a timelike vector t′ (t′2 = t′ · t′ < 0). As usual, we write 
v1 · v2 = gij v1

i v2
j , where  gij are the components of the metric. 

(a) Prove that you can find vectors s and t such that s ·s = 1,  t ·t = −1 and  t ·s = 0. The vectors 
t and s provide a canonical basis for V , which is now identified as the space R1,1. Namely,  we  

can say t = (1, 0), s = (0, 1) together with g00 = −1, g11 = 1  and  g01 = g10 = 0.  
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(b) Consider now two arbitrary vectors v1 and v2 in V . Prove  that  

(v1 · v2)2 ≥ v1
2 v2

2 , 

where the equality only holds if the vectors v1 and v2 are parallel. 

4. (10 points) Metric on S2 from stereographic parameterization. 

Consider a unit sphere S2 in R3 centered at the origin: x2 + y2 + z2 = 1.  Denote  a  point  on  the  

sphere by �x = (x, y, z). In the stereographic parameterization of the sphere we use parameters 
ξ1 and ξ2 and points on the sphere are (see (6.1)): 

�x (ξ1, ξ2) =  x(ξ1, ξ2) , y(ξ1, ξ2) , z(ξ1, ξ2) . 

Given parameters (ξ1, ξ2), the corresponding point on the sphere is that which lies on the line 
that goes through the north pole N = (0, 0, 1) and the point (ξ1, ξ2 , 0). Note that the north pole 
itself is not attained for any finite values of the parameters. 

(a) Draw a picture showing the above construction. What are the required ranges for ξ1 and ξ2 

if we wish to parameterize the full sphere (except for the north pole)? 

(b) Calculate the functions x(ξ1, ξ2), y(ξ1, ξ2), and z(ξ1, ξ2). 

(c) Calculate the four components of the metric gij (ξ) defined in (6.14). This is the metric on 

the sphere, described using the ξ parameters The algebra here is a bit messy, although the result 
is quite simple – it is OK to use a symbolic manipulator, like MatLab, Maple, or Mathematica. 

(d) Check your result by computing the area of the sphere using (6.17). 

5. (10 points) Problem 6.2 (restated here for your convenience with added notation) 

Examine the Nambu-Goto action (6.39) for a relativistic string with endpoints attached at (0,�0) 
and (a,�0). Consider the non-relativistic approximation where |�v⊥| � c and the oscillations are 
small (see (4.3), whose left-hand side should have an absolute value!). 

You may denote by �y the collection of transverse coordinates X2, . . . Xd and write �y(t, x), where 
x is the coordinate corresponding to X1 . 

Work in the static gauge. Moreover, parameterize the strings using X1 = x = aσ/σ1. This  

parameterization is allowed for small oscillations. In fact, it is allowed for any motion in which 

X1 is an increasing function along the string. 

Show that the action reduces, up to an additive constant, to the action for a non-relativistic 
string performing small transverse oscillations. What is the tension and the linear mass density 

of the resulting string? What is the additive constant? 

6. (10 points) Problem 6.5. 
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