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I. World-Sheet Currents: 

Noether’s Theorem: 

Suppose than an action of the form 

S = dξ0 dξ1 . . .  dξk L(φa, ∂αφa) (1.1) 

is invariant under an infinitesimal variation of the fields 

φa(ξ) → φa(ξ) +  δφa(ξ) , with δφa(ξ) =  εiha
i (φ

a, ∂αφa) (1.2) 

in the sense that the Lagrangian density is changed at most by a total derivative, 

δL = 
∂ � 

εiΛα
� 
. (1.3) 

∂ξα i 

Then the currents ji
α(ξ) defined by 

εiji
α ≡ 

∂(∂
∂

α

L 
φa) 

δφa − εiΛα
i (1.4) 

are conserved: 
∂αji

α = 0  5) (for  each  i). (1.

This implies that the corresponding charges, 

Qi = dξ1 . . .  dξk ji 
0(ξ) , (1.6) 

are independent of time. 

The proof is constructed by replacing δL in Eq. (1.3) by an expansion in terms of 
the derivatives of L and the variation of the fields (1.2), and then using the Lagrangian 
equations of motion. 
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World-Sheet Application 1: Conservation of Momentum: 

Identifying ξ0 ≡ τ and ξ1 ≡ σ, we can apply this theorem to the string world-sheet. 
Defining Ẋµ ≡ ∂τ X

µ and Xµ′ ≡ ∂σ X
µ, the string action can be written 

S = − 
T0 

� τf 

dτ 
� σ1 

dσ (Ẋ ·X ′)2 − (Ẋ)2(X ′)2 = 
� 

dξ0 dξ1 L(∂0 X
µ, ∂1X

µ) , (1.7) 
c τi 0 

which is invariant under the symmetry 

δXµ(τ, σ) =  εµ , (1.8) 

which describes a uniform spacetime translation of the string coordinates Xµ. (Note that 
this is really a family of D symmetries, one for each value of the spacetime index µ. But 
I will continue to describe it as one symmetry, in the sense that it forms one multiplet of 
symmetries.) The corresponding conserved current is 

jµ
α ≡ (jµ

0, jµ
1 ) =  

∂L 
,

∂L 
= 

� Pµ
τ , Pµ

σ � 
. (1.9) 

∂Ẋµ ∂Xµ′ 

More compactly, 

jµ
α = Pµ

α . (1.10) 

The conserved charge is the total spacetime momentum of the string: 

� σ1 

pµ = Pµ
τ (τ, σ) dσ . (1.11) 

0 

The above expression gives the conserved momentum as an integral over a line of constant 
τ , but the reparameterization invariance of the string suggests that there is nothing special 
about such a line. In fact we found that the conservation equation ∂αjµ

α = 0 implies, 
with the use of the two-dimensional divergence theorem, that we can write 

pµ = 
� Pµ

τ dσ −Pµ
σ dτ 

� 
, (1.12) 

γ 

where γ describes a general curve. For open strings γ must begin at one end of the string

and end at the other, and for closed strings it must wind once around the world-sheet.
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World-Sheet Application 2: Lorentz Symmetry and its Currents: 

Lorentz transformations can be described by 

δXµ = εµν Xν , where εµν = −ενµ . (1.13) 

The string Lagrangian is invariant under this symmetry, and with Noether’s theorem one 
obtains the conserved world-sheet current 

Mα Pα −Xν Pα , where α = 0  . (1.14) µν = Xµ ν µ ∂αMµν 

The conserved charge is then 

Mµν = Mµν
τ (τ, σ) dσ = 

� 
XµPν

τ −Xν Pµ
τ 
� 
dσ , (1.15) 

where Mµν = −Mνµ, or  it  can  be  written  as an integral over  a  general  curve,  

Mµν = Mµν
τ dσ −Mµν

σ dτ , (1.16) 
γ 

analogous to Eq. (1.12).  Mµν is conserved for any spacetime dimension. For the familiar 
case of four dimensions, 

1 
Li = εijk Mjk (1.17) 

2 

is the total angular momentum of the string. The M0i components can be evaluated 
easily in static gauge, giving 

M i0 = 
� 
XiPτ0 −X0Pτi

� 
dσ = p 0 

� 
Xi − v i t 

� 
, (1.18) cm cm

where 

Xi =
1 
0 dσXiPτ0 , v i = 

p
0 

i 

c .  (1.19) cm cm p p

Thus, the conservation of M i0 gives an explicitly time-dependent conservation law, im­
plying that the center of mass position Xi moves at the fixed velocity vi .cm cm
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II. Tension, Slope Parameter, String Length, h̄, and  c: 

By analyzing the rigidly rotating open string, we found that the energy E and angular 
momentum J are related by 

J 
¯

= α′E2 , (2.1) 
h 

where 
1 

α′ = . (2.2) 
2πT0 ̄hc 

It is traditional to express string quantities in terms of α′, rather than T0. We will also, 
from now on, use natural units, which means that we define 

¯ (2.3) h ≡ c ≡ 1 . 

We  can then write  α′ = 1/(2πT0). T0 has the dimension of energy/length, or (energy)2 

in natural units. α′ then has the dimension of 1/(energy)2, or equivalently (length)2, so  
it makes sense to define a “string length” 

√ 
 s = α′ . (2.4) 

III. The String in Light-Cone Gauge: 

(If the next few pages seem familiar, it is because they were adapted from Homework 8 
Solutions, Problem 1.) 

We begin by choosing the worldsheet parameter τ by setting it equal to a linear 
combination of coordinate values, 

1 
τ ≡ n · X ,  (3.1) 

λ 

where λ is an arbitrary constant. n is an arbitrary timelike or lightlike vector, where here 
we will take � �

1 1 
nµ = nlc, µ  ≡ √ , √ , 0 ,  . . .  ,  0 , (3.2a) 

2 2 

so nlc · X = X+, and Eq. (3.1) is called the light-cone gauge condition. In Chapter 6 we 
used the same formalism, but with 

nµ = nstatic, µ  ≡ (1, 0,  . . .  , 0) , (3.2b) 

which leads to the static gauge condition. Until further notice, the equations here will 
apply to both cases, except for statements that refer explicitly to + or − components. 
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SEC. III: THE STRING IN LIGHT-CONE GAUGE 

To choose a helpful parameterization of σ, we can first decide that we will define σ 
for some initial value of τ , and then we will determine σ for other values of τ by insisting 
that the lines of constant σ are orthogonal to the lines of constant τ . This condition is 
written mathematically as 

∂X ∂X · ≡ Ẋ ·X ′ = 0. (3.3) 
∂τ ∂σ 

The procedure for constructing such lines of constant σ is described in the textbook in 
the last paragraph starting on p. 154, where it is used to construct the line σ = 0  for  the  
case of closed strings. But the procedure can be used for both open and closed strings 
and for all σ, except that for open strings the endpoints must be lines of constant σ, and  
hence we cannot impose this procedure to construct the lines σ = 0  or  σ = σ1. We can 
show, however, that Eq. (3.3) nonetheless holds at the endpoints, as a consequence of the 
string boundary conditions. To do this we will assume that we always have Neumann 
boundary conditions in the direction of n, 

n · Pσ = 0 at open string endpoints, (3.4) 

a condition necessary for the conservation of n · p, where  p is the total momentum of the 
string. 

We need to make use of Eq. (3.4) without assuming Eq. (3.3), so that we can demon­
strate that Eq. (3.3) holds at the endpoints. We begin by writing the general formulas for 
Pτµ  and Pσµ from Eqs. (6.49) and (6.50) in the textbook, using natural units (h̄ ≡ c ≡ 1) 
and replacing T0 by 1/(2πα′) (as in Eq. (2.2): 

1 
� 
Ẋ ·X � 

Xµ′ − 
� 
X

�2 
Ẋµ 

Pτµ  = − � , (3.5a) 
2πα′ 

Ẋ ·X ′ �2 − Ẋ
�2 

X ′ �2 

1 
� 
Ẋ ·X ′� 

Ẋµ − 
� 
Ẋ

�2 
Xµ′ 

Pσµ = − � . (3.5b) 
2πα′ 

Ẋ ·X ′ �2 − Ẋ
�2 

X ′ �2 

∂ ˙Note that Eq. (3.1) implies that ∂σ n ·X = n ·X ′ = 0, and  n ·X = λ, so Eq. (3.5b) implies 

1 Ẋ ·X ′ λ 
n · Pσ = −

2πα′ �� �2 � �2 � �2 
. (3.6) 

Ẋ ·X ′ − Ẋ X ′ 

The denominator of the above expression is never infinite, and λ 	= 0. Thus, the vanishing 
of n · Pσ at the string endpoints implies that Eq. (3.3) holds at the endpoints, and 
hence holds everywhere for our parameterization. The validity of Eq. (3.3) at the string 
endpoints implies that the construction of lines of constant σ using orthogonality to lines 
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of constant τ will join smoothly with the evolution of the string endpoints, which have 
fixed values of σ. 

Using Eq. (3.3), Eqs. (3.5) simplify to 

1 
� 
X ′�2 

Ẋµ 

Pτµ  = � , (3.7a) 
2πα′	 − Ẋ

�2 
X ′ �2 

� �2
1	 Ẋ Xµ′ 

Pσµ = � ,	 (3.7b) � �22πα′ − 
� 
Ẋ

�2 
X ′ 

from which it follows immediately (using Eq. (3.1)) that 

1 
� 
X ′�2 

λ 
n · Pτ = � , (3.8a) � �22πα′ � ˙ �2 

X ′− X 

n · Pσ = 0  .	 (3.8b) 

From Eq. (3.8b) and the equations of motion 

∂Pτµ 	 ∂Pσµ 

+	 = 0  , (3.9) 
∂τ	 ∂σ 

it follows that 
∂ 

[n · Pτ ] = 0  ,	 (3.10) 
∂τ 

or, in other words, n · Pτ is independent of τ . 

We can simplify these equations further by making a special choice for the definition 
of σ for the initial value of τ . Specifically, we can insist that n · Pτ be a constant. Since 
the total momentum p is given by 

� σ1 
µp = dσ Pτµ  ,	 (3.11) 

0 

the constant n ·Pτ prescription is equivalent to assuming that the density of n ·p = p+ is 
uniform in σ. From Eq. (3.8a), we see that this uniformity can be achieved by requiring 

� �2 
X ′� = constant ,	 (3.12) 

− 
� 
Ẋ

�2 � 
X ′�2 
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where for convenience we will choose the constant to be one. Solving Eq. (3.12) for 
� 
X ′�2 

gives 
X

′ 2 = −Ẋ2 , (3.13) 

a condition that can always be achieved by a redefinition of σ. That is, if the condition 
does not already hold, we can introduce a new variable σ′(σ) so  that  � �2 � �2 � �2

∂X ∂X dσ 
= = −Ẋ2 ,

∂σ′ ∂σ dσ′ 

or � 
dσ′ X ′ 2 

dσ 
= − 

Ẋ2 
, (3.14) 

which can be integrated to determine σ′(σ). Once the new σ′ is defined, the old σ can 
be forgotten and the new parameter can be renamed σ. 

With n · Pτ now constant at the initial time τ , Eq. (3.10) can be invoked to show 
that n · Pτ has a constant value on the entire string worldsheet, which from Eqs. (3.8a) 
and (3.12) is given by 

n · Pτ = 
λ

. (3.15) 
2πα′ 

From Eq. (3.11), 

n · p = 
σ1λ

. (3.16) 
2πα′ 

It is customary to choose σ1 = π for open strings, and 2π for closed strings, so we can 
write 

2π 
λ = (n · p)α′ = β(n · p)α′ , (3.17) 

σ1 

where � 
2 for open strings 

β = (3.18) 
1 for closed strings . 

The light-cone gauge condition (3.1) is then written in final form as 

n ·X(τ, σ) =  βα′(n · p)τ .  (3.19) 

Furthermore, Eqs. (3.7) now simplify to 

Pτµ  =
1 

Ẋµ ,
2πα′ 

Pσµ = − 
1 

Xµ′ 
, 

(3.20) 

2πα′ 
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and the equation of motion (3.9) simplifies to the wave equation, 

Ẍ µ −Xµ ′′ = 0  . (3.21) 

The full set of equations can be further simplified by combining the σ–τ orthogonality 
condition of Eq. (3.3) with the constant n · Pτ condition of Eq. (3.13), giving 

� ′�2 
Ẋ ±X = 0  . (3.22) 

Eqs. (3.19), (3.21), and (3.22) then give the full set of equations of motion of the string 
in light-cone gauge. Eqs. (3.20) give simple expressions for the world-sheet momentum 
current Pα in this gauge. µ 

Until this point the equations were valid for any timelike or null vector n in the 
gauge condition of Eq. (3.17), but now we will specialize to the light-cone gauge, with 
n = nlc as defined by Eq. (3.2a), and 

1 
x ± ≡ √ (x 0 ± x 1) . (3.23) 

2 

The important advantage of light-cone gauge is that it allows us to use Eq. (3.22) to solve 
explicitly for one of the components of Xµ. Specifically, Eq. (3.22) becomes 

−2 
� 
Ẋ+ ±X+ ′�� 

Ẋ− ±X−′� 
+ 

� 
ẊI ±XI ′�2 = 0  , (3.24) 

where I is summed over the D-2 indices other than + and −. Eq. (3.19) implies that 

+Ẋ+ = n · Ẋ = βα′ p , X+′ = 0  . (3.25) 

Eq. (3.24) can then be solved for the derivatives of X−, giving 

� � 1 � �2 
Ẋ− ±X−′ =

2βα′p+ 
ẊI ±XI ′ . (3.26) 

By taking linear combinations of the above expression we can find Ẋ− and X−′, which  
can be integrated to determine X−(τ, σ) up to an integration constant. Note that if we 
had used static gauge we still could have formally expressed one component of Xµ in 
terms of the others, but the expression would involve a square root of a sum of operators, 
which is much more difficult to deal with. 
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Classical Solution for the Open String: 

We begin by writing equations for the open string with a space-filling D-brane, so 
all the string coordinates Xµ satisfy free boundary conditions. 

The wave equation (3.21) implies that the most general solution can be written as 
the sum of an arbitrary wave moving to the left and an arbitrary wave moving to the 
right: 

1 
Xµ(τ, σ) =  fµ (τ + σ) +  gµ(τ − σ) , (3.27) 

2 
µwhere fµ and g are arbitrary functions of a single argument. The boundary condition 

at σ = 0 implies that 

∂Xµ 1
(τ, 0) = fµ′(τ ) − gµ′(τ ) = 0  , (3.28) 

∂σ 2 

so fµ and gµ are equal up to a constant, which can be absorbed into a redefinition of f . 
Eq. (3.27) can therefore be written as 

1 
Xµ(τ, σ) =  fµ (τ + σ) +  fµ(τ − σ) . (3.29) 

2 

The boundary condition at σ = π then implies that 

∂Xµ 1
(τ, π) =  fµ′(τ + π) − fµ′(τ − π) = 0  , (3.30) 

∂σ 2 

which must hold for all τ , so  fµ′ must be periodic with period 2π. 

Since fµ′ is periodic with period 2π,  we can  write it  as  a  Fourier  sum:  

∞√ � 
fµ′(u) =  2α′ αn

µ e −inu , (3.31) 
n=−∞ 

where reality implies that 
αµ = αµ∗ . (3.32) −n n 

√ 
The constant factor 2α′ is inserted by convention, and serves the purpose of making the 
expansion coefficients αµ

n dimensionless. To see this, note that Xµ has units of length, 
σ and τ are dimensionless, and α′ has dimensions of  (length)2. This Fourier expansion 
can immediately be related to the expansion for the derivatives of Xµ(τ, σ), since from 
Eq. (3.29) one can see that 

Ẋµ ± Xµ′ = fµ′ (τ ± σ) , (3.33) 
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from which it follows that 

∞√ � 
Ẋµ ± Xµ′ = 2α′ αµ

n e −in(τ±σ) . (3.34) 
n=−∞ 

Integrating Eq. (3.31) and inserting the result into Eq. (3.29), we have 

√ √ � 1

Xµ(τ, σ) =  xµ + 2α′ αµ τ + i 2α′ αn

µ −inτ

00 (3.35)
cos nσ ,
e


n 
n �=0 

where x

Eq. (3.35) holds for every component Xµ of the string coordinates, but the coefficients 
that appear in the expansion are not all independent. One relationship comes from using 
Eq. (3.35) to calculate the total momentum of the string, which is given by Eqs. (1.11) 
and (3.20) as � π Ẋµ αµ 

0
µ is the constant arising from the integration of (3.31).


0 

2α′ ,
 (3.36)
pµ = dσ = √
2πα′ 

0 

µα0 

so 
√ 

= 2α′ pµ . (3.37) 

For µ = +, the expansion is already fixed by the light-cone gauge condition (3.19),

X+ = 2α′p+τ , so  

√


0

+
0x 

relation is a special case of Eq. (3.37).  Furthermore, the µ = − components, 
except for the zero mode x − 

+
0= 0  ,
 2α′ + + = 0  for  n 	= 0,  (3.38)
α
 α
=
 p ,
 n 

where the α
+0
, can be found from Eq. (3.26).  Using Eq. (3.34) to re-express


both sides of Eq. (3.26), one finds that


α− 
n = 

1 √ 
2α′ p+ 

L⊥ 
n , where L⊥ 

n ≡ 
1 
2 

∞ � 

p=−∞ 

αI 
n−p α

I 
p . (3.39) 

Recall that I is summed over the “transverse” indices, meaning all indices other than + 
or −. Thus, the complete solution is specified by choosing values for each of the αI

n, for  
n ∈ Z and I = 2, 3,  . . .  ,  D  − 1, subject to the reality constraint of Eq. (3.32), and also 

0choosing the values of x
p

µ for µ = −, 2, 3,  . . .  ,  D  − 1, and finally choosing the value of

+ .
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Classical Solution for the Closed String: 

The closed string has the same equations of motion as the open string, but the 
boundary conditions are different. In analogy to Eq. (3.27), we can start with the general 
solution to the wave equation, 

Xµ(τ, σ) =  Xµ(τ + σ) +  Xµ (τ − σ) . (3.40) L R

(The names we are using for the two functions are more elaborate than the simple f and 
g used in Eq. (2.27) for the open string, and there is a reason: these names will remain 
in use for longer, so we are choosing them to be more descriptive.) In this case we have 
no endpoint conditions, but we do insist on periodicity. We choose the period to be 2π, 
so 

Xµ(τ, σ + 2π) =  Xµ(τ, σ) for all τ and σ. (3.41) 

For now our strings move in Minkowski space, and Eq. (3.41) is certainly the correct 
periodicity condition in that case. It is worth mentioning, however, that in Chapter 
17 we will consider strings that move in spaces that are not simply connected, spaces 
that contain loops which cannot be continuously shrunk to a point. It is useful in such 
cases to use coordinates for the unshrinkable loops which are not single-valued, and then 
Eq. (3.41) would need to be modified.  

Defining

u ≡ τ + σ ,  v  ≡ τ − σ ,  (3.42)


the periodicity condition becomes 

Xµ(u + 2π) − Xµ(u) =  Xµ (v) − Xµ (v − 2π) . (3.43) L L R R

Since the left-hand side does not depend on v, and the right-hand side does not depend 
on u, both sides must be constant. Thus neither XL

µ(u) nor  xR
µ (v) are required to be 

periodic, but the amount by which they change when their argument increases by 2π 
must be the same for both functions, and independent of the argument. The derivatives 
of the functions must be strictly periodic, so we can expand 

∞ 

Xµ′(u) =  
α′ � 

ᾱµe −inu 
L n2 

n=−∞ � (3.44) ∞ 

Xµ′(v) =  
α′ � 

αµe −inv .R n2 
n=−∞ 
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Note that the overbar in the above equation does not denote complex conjugation — in­
stead the coefficients ᾱn

µ are a completely independent set of variables from the coefficients 
αµ

n. Both obey reality conditions 

αµ = αµ∗ , ᾱµ = ᾱµ∗ , (3.45) −n n −n n 

and the condition (3.43) implies that 

= αµ 
0αµ¯0 . (3.46)


Integrating and using Eq. (3.46), the string coordinates Xµ(τ, σ) can be expanded as 

Xµ(τ, σ) =  xµ 
√ 

2α′ αµ α′ � e−inτ � 
n 

inσ + ᾱµ −inσ 
� 

00 (3.47)
αµ+
 τ + i
 e
 e .

2
 n n 

n �=0 

µα0

The calculation of the total string momentum pµ is similar to the previous one, but 
this time we integrate σ from 0 to 2π: 

� 2π Ẋµ 2 
(3.48)
pµ = dσ = ,


2πα′ α′ 
0 

µα0 

so 

α′ 
(3.49)
µ= p
 .


2


+
0

For µ = +, the expansion is fixed by the light-cone gauge condition (3.19), so 

x 
α′ 

+
0 

+ + += 0  ,
 = ᾱ
 = 0  for  n 	= 0,  (3.50)
α
 α
=

2 

p ,
 n n 

relation is a special case of Eq. (3.49).  The coefficients of the X− expansion, where the α

− 
0except for x 

different. From Eq. (3.40) one has 

Ẋµ = Xµ′(τ + σ) +  Xµ′(τ − σ)L R 
(3.51) 

Xµ′ = Xµ′(τ + σ) − Xµ′(τ − σ) ,L R 

, are again determined by Eq. (3.26), but the explicit calculation is a bit


+
0
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so with Eqs. (3.44) one has 

∞√ � −in(τ+σ)Ẋµ + Xµ′ = 2XL
µ′(τ + σ) =  2α′ ᾱµ

ne 
n=−∞ 

(3.52) ∞√ � 
Ẋµ − Xµ′ = 2Xµ′(τ − σ) =  2α′ αµe −in(τ−σ) .R n

n=−∞ 

Using the above relations to evaluate each side of Eq. (3.26), and recalling that β = 1 for  
closed strings, one finds 

α− 
n = 

p

1 
+ α

2 
′ L

⊥ 
n , ᾱ− 

n = 
p

1 
+ α

2 
′ L̄

⊥ 
n , (3.53) 

where


Ln 
⊥ ≡ 

1 
∞ 

αn
I 
−p αp

I , L̄ 
n 
⊥ ≡ 

1 
∞ 

ᾱn
I 
−p ᾱp

I . (3.54) 
2 2 

p=−∞ p=−∞ 

For the case of µ = −, Eq. (3.46) produces the nontrivial constraint 

L̄⊥ = L⊥ , (3.55) 0 0 

a relation that has no analogue for the open string. 

For the closed string, the complete solution is specified by choosing values for each 
of the αI

n and ᾱn
I , for  n ∈ Z and I = 2, 3,  . . .  ,  D− 1, subject to the reality constraints of 

Eq. (3.45), and subject to the constraints ᾱI 
0 = αI 

0 and L̄⊥ 
0 = L⊥ 

0 . One must also choose 
the values of x0 

µ for µ = −, 2, 3,  . . .  ,  D − 1, and also the value of p+ . 
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IV. Quantization of the String in Light-Cone Gauge: 

Quantization of the Open String: 

Basic Operators and Commutation Relations: 

We now discuss the quantization of the open string solution, corresponding to the 
classical solutions described in Sec. III.  

The beauty of the light-cone gauge is that we can treat the transverse components 
XI(τ, σ) of the string coordinates as unconstrained dynamical variables, while the µ = +  
and µ = − components are for the most part determined by the transverse components. 
We found only two exceptions to this rule: x − 

0 and p+ were not determined by the 
transverse operators. Since 

∂L PτI  = (4.1) 
∂ẊI 

is the canonical momentum variable conjugate to XI , we will choose the following set of 
classical variables to promote to Schrödinger operators: 

Schrödinger operators: XI(σ) , x  − 
0 , PτI(σ) , p  + . 

We adopt the usual canonical commutation relations, 

XI(σ) , PτJ (σ′) = iηIJδ(σ − σ′) =  iδIJδ(σ − σ′) , 

XI(σ) , XJ (σ′) = PτI(σ) , PτJ (σ′) = 0  , 

− + x0 , p  = iη−+ = −i ,  

− − , PτI(σ) + , PτI(σ)x0 , X
I(σ) = x0 = p + , XI(σ) = p = 0  . 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

Treating τ as the time variable for the system, we will also introduce Heisenberg operators 
which also depend on τ : 

−Schrödinger operators: XI(τ, σ) , x0 (τ ) , PτI(τ, σ) , p  +(τ ) . (4.7) 

From the classical motion, however, we expect that x − 
0 (τ ) and  p+(τ ) will actually be 

independent of their arguments. For the Heisenberg operators, the nonzero commutators 
will be 

XI(τ, σ) , PτJ (τ, σ′) = iηIJδ(σ − σ′) =  iδIJδ(σ − σ′) , (4.8) 
− x0 (τ ) , p  +(τ ) = iη−+ = −i ,  (4.9) 
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where the other commutators are zero, as in Eqs. (4.4) and (4.6). 

The Heisenberg fields Xµ(τ, σ) can be expanded exactly as in Eq. (3.35) 

√ √ � 1 
Xµ(τ, σ) =  x0 

µ + 2α′ α0 
µ τ + i 2α′ αn

µ e −inτ cos nσ , (3.35) 
n 

n �=0 

except now the coefficients xµ 
0 and αµ

n are operators, rather than numbers. For µ = I, 
we can treat them as independent operators, and we can use the canonical commutation 
relations (4.7) and (4.8) to determine the commutation relations for the new operators 
αµ. The simplest link between the α’s and the X’s is found in Eq. (3.34), n

∞√ � 
Ẋµ ± Xµ′ = 2α′ αµ

n e −in(τ±σ) . (3.34) 
n=−∞ 

Our goal is to express the sum on the right in terms of Heisenberg operators Xµ(τ, σ), 
but to get it right we must be careful about the range of σ. The sum  on  the right  (for  
either the upper or lower sign) defines a function which is manifestly periodic in σ with 
period 2π, but the equation makes sense only for σ in its allowed physical range, which 
is σ ∈ [0, π]. Let us define 

∞√ � 
AI (τ, σ) ≡ 2α′ αµ

n e −in(τ+σ) . (4.10) 
n=−∞ 

Eq. (3.34) then implies that 

ẊI (τ, σ) +  Xµ′(τ, σ) =  AI (τ, σ) for  σ ∈ [0, π], (4.11) 

but also 
ẊI (τ, σ) − Xµ′(τ, σ) =  AI (τ,−σ) for  σ ∈ [0, π]. (4.12) 

The above equation can be rewritten as 

ẊI (τ,−σ) − Xµ′(τ,−σ) =  AI (τ, σ) for  σ ∈ [−π, 0]. (4.13) 

Eqs. (4.11) and (4.13) can then be used to write an equation for AI (τ, σ) that is  valid  
over its full period, which can be taken as σ ∈ [−π, π]: 

ẊI (τ, σ) +  Xµ′(τ, σ)  if  σ ∈ [0, π]
AI (τ, σ) =  (4.14) 

ẊI (τ,−σ) − Xµ′(τ,−σ) if  σ ∈ [−π, 0]. 
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The elementary commutator is found by differentiating Eq. (4.8) with respect to σ, and  
replacing PτJ  by ẊJ /(2πα′), as specified in Eq. (3.20). Thus 

XI ′(τ, σ) , ẊJ (τ, σ′) = 2πiα′ δIJ  d
δ(σ − σ′) . (4.15) 

dσ 

If you are not familiar with the derivative of a δ-function, don’t be frightened. Expres­
sions containing δ-functions are defined by what happens when one integrates over them, 
perhaps after multiplying by a smooth function. Derivatives of a δ-function are then 
defined by an integration by parts. For example, 

d dF dF 
dxF (x) δ(x − a) =  − dx δ(x − a) =  − (a) . (4.16) 

dx dx dx 

By combining Eqs. (4.14) and (4.15), one finds 

� � d 
AI (τ, σ) , AJ (τ, σ′) = 4πiα′ δIJ  δ(σ − σ′) . (4.17) 

dσ 

To check Eq. (4.17) one needs to consider four separate cases: (σ ∈ [0, π], σ′ ∈ [0, π]), 
(σ ∈ [0, π], σ′ ∈ [−π, 0]), (σ ∈ [−π, 0], σ′ ∈ [0, π]), and (σ ∈ [−π, 0], σ′ ∈ [−π, 0]). You 
should find, however, that it works in each case. In evaluating this expression it helps to 
recall that δ(x − y) =  δ(y − x), and d δ(x − y) =  − d δ(x − y).dx dy 

One can then invert Eq. (4.10) to give 

1 
� 2π 

αI = √ dσ ein(τ+σ)AI (τ, σ) . (4.18) n 2π 2α′ 
0 

Using Eq. (4.17), the commutator is then given by 

� � 1 
� 2π 2π � �


αI , αJ = dσ′ e im(τ+σ� ) dσein(τ+σ) AI (τ, σ) , AJ (τ, σ′)
n m 8π2α′

0 0


=
4πiα′ 

δIJ  
� 2π 

dσ′ e im(τ+σ� ) 
� 2π 

dσein(τ+σ) d δ(σ − σ′)
8π2α′ 

0 0 dσ (4.19) 

=
2
i

π 
δIJ  

� 

0

2π 

dσ′ e im(τ+σ� )(−in)e in(τ+σ� ) 

= nδIJ  δm+n,0 , 

so finally 

αI , αJ = nδm+n,0 δ
IJ  . (4.20) n m 
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Given Eqs. (4.18) and (4.14), one sees that the αI
n are constructed entirely from operators 

ẊI , and therefore they commute with x 

x

0

0

XI ′ −and
 and p
+ .


To find the commutators of the
 I we can start by rewriting the commutator
,

ẊJXI(τ, σ) , PτJ  of Eq. (4.8) in terms of
 by using Eq. (3.20), and integrating σ


from 0 to π to simplify the mode expansion of XI(τ, σ), as given by Eq. (3.35).  Note 
that although the cos nσ factor in Eq. (3.35) has period 2π and not π, it still vanishes 
when integrated from 0 to π. The result is � √ � 

x 2α′ αI 
00 τ , ẊJ (τ, σ′) = 2α′iδIJI (4.21)
+
 .


From Eq. (4.20) we know that αI 

the expansion for 
0 commutes with the sum of αJ

n operators that appear in 
˙


0XJ , so the only contribution comes from x
for ẊJ , 

∞ � √ 

I . Inserting the expansion


I , αJ
n 

� 
cos nσ′ e −inτ = 2α′ i δIJ  . (4.22) 

I I 
0

x 
n=−∞ 

This expression must hold for all τ , but the left hand side has the form of a Fourier 
expansion in τ , with period 2π. Since Fourier expansions are unique, the two sides must 

0

match term by term. The right-hand side has only an = 0 term, so we have n 

√� � � �
J IJ2 ′, α α i δ=x x00

Recalling that αJ 
0 

, αn
J = 0  if  n 	 (4.23) = 0.  .,


√ � �


0

= 2α′ pJ Eq. (3.37) , the first of the relations above is equivalent to 

I Jx = iδIJ  , (4.24) , p 


which is what we would expect. 

Note that the commutation relations (4.20) imply that the αI
n behave essentially as 

creation and annihilation operators, except that they are not normalized in the standard 
way. When quantized, the reality condition αµ = αµ∗ of Eq. (3.32) becomes −n n 

αI = αI† , (4.25) −n n 

and the αI
n can be related to a new set of operators an, with  

αI = 
√ 
na  I , αI = 

√ 
na  I† for n ≥ 1, (4.26) n n −n n 

so that the commutation relations for the new operators are 

a I , a  J† = δIJ  δ , (4.27) m n mn 

exactly the form of the standard commutation relations for creation and annihilation 
operators. 
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Solving for X− and the Virasoro Algebra: 

Now that we understand the operators associated with the transverse coordinates 
XI (τ, σ), we can think about solving for the dependent X−(τ, σ) operators. The equa­
tions 

� � � �2 
Ẋ− ± X−′ =

2βα
1 
′p+ 

ẊI ± XI ′ (3.26) 

and 

∞√ � −in(τ±σ)Ẋµ ± Xµ′ = 2α′ αµ
n e (3.34) 

n=−∞ 

are still expected to hold as operator equations, but Eq. (3.26) leads to ordering ambi­
guities, since ẊI and XI ′ do not commute. One can proceed to solve for α− 

n obtaining 
as before the result 

α− 
n = 

1 √ 
2α′ p+ 

L⊥ 
n , where L⊥ 

n ≡ 
1 
2 

∞ � 

p=−∞ 

αI 
n−p α

I 
p , (3.39) 

but now the ordering of the operator products in the expression on the right is ambiguous. 
For n 	= 0 the operators commute, but for n = 0 they do not. Since the commutator is a 
c-number, the operator Lp0 is ambiguous in that it might contain an arbitrary c-number. 
To be able to at least discuss the ambiguity quantitatively, we define 

1 
∞ 

L⊥ 
0 ≡ : αI

n−pα
I
p : , (4.28) 

2 
p=−∞ 

where 
: expression : ≡ Normal ordered form of expression. (4.29) 

In this notation, given Eq. (4.26), normal ordering means that positive indices are placed 
to the right. Given the normal ordering prescription, : αI

n−pα
I
p : has the same value for 

p and −p, so  L⊥ 
0 can be  expanded as  

L⊥ 1 
αI 

∞ 

αI αI = α′ I I + 
∞ 

I† I 
0 = 0α0 

I + −p p p p pap pp . (4.30) 
2 

p=1 p=1 
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− 
0 by writing
With this definition, we allow for the ambiguous c-number in α


√
 1 �
√
 L
− − =
 ⊥ 
0 =
 2α
 (4.31)
+ a
 ,
α
 p
n +2α′ p

where a is an as yet unknown constant. The constant a is intimately tied to the spectrum 
of states in string theory, since the invariant M2 for the string state can be written as 

2 + I I= −p 2 = 2  p p − − p p =

1 �


α

L
⊥ 

0 − p
I I p
+ a
M


(4.32) 
1 � �⊥ + aN
=
 ,

α

where 

∞ 

N⊥ ≡ na  In 
† a In . (4.33) 

n=1 

Now that we have an unambigous definition of the operators L
⊥ 
n , called the Virasoro


operators, we can calculate their commutators. They are calculated in the textbook, 
and in a set of notes that are posted on the course home page, so I will not repeat the 
calculation here. The result, however, is 

, L 
⊥ 
n = (m− n)L
⊥ 

m+n +

1

12


m
(m
2 − 1)(D − 2)δ⊥ 
m+n,0 . (4.34)
L
m 

Other commutators that may prove useful are the following:


, α 
J 
� 

J= −nα (4.35) n m+n 
⊥L
m 

and 
√ 

L
⊥ , x  I 
0 

� 
= −i 2α′ αI

m . (4.36) m 



� � 

� � 

� � 

8.251 REVIEW NOTES FOR TEST 2, SPRING 2007 p. 20 

SEC. IV: QUANTIZATION OF THE STRING IN LIGHT-CONE GAUGE 

When the Virasoro generators act on string coordinates, they generate reparameteriza­
tions of the string: 

L⊥ , XI (τ, σ) = ξτ ẊI + ξσ XI ′ , (4.37) m m m 

where 

ξτ (τ, σ) =  −ieimτ cos mσ , m
(4.38) 

ξσ (τ, σ) =  e imτ sin mσ .m

This is a reparameterization in the sense that the change in XI is proportional to the 
derivative of XI with respect to σ or τ , so the effect is the same as shifting these para­
meters by an infinitesimal amount. That is, 

εL⊥ , XI (τ, σ) = XI (τ + εξτ , σ  + εξm
σ ) − XI (τ, σ) +  O(ε2) . (4.39) m m

Testing Lorentz Invariance: 

We now confront an important issue, which is central to the question of whether this 
theory is well-defined at all. The action that we started with was manifestly Lorentz­
invariant, and we intended to construct a Lorentz-invariant theory, consistent with the 
fact that no violations of Lorentz invariance have ever been seen. In quantizing the theory, 
however, we found it convenient to ignore the Lorentz symmetry, choosing a light-cone 
gauge in which the 0 and 1-directions are treated in a special way. There is no guarantee, 
therefore, that the theory that we have constructed is in fact Lorentz-invariant. To see if 
the theory is invariant, we will attempt to construct the operators that generate Lorentz 
transformations. 

We begin to construct the Lorentz generators by using Eq. (1.15), 

Mµν = Mτ
µν (τ, σ) dσ = 

� 
XµPν

τ − Xν Pµ
τ 
� 
dσ . (1.15) 

I guess we have not shown it in this course, but in general a quantity that is conserved by 
virtue of a symmetry will also the generator of that symmetry. For example, angular mo­
mentum is conserved as a consequence of rotational invariance, and angular momentum 
in turn is the generator of rotations. Inserting the mode expansion (3.35) into Eq. (1.15), 
using Eq. (3.20) for Pµ

τ , one soon finds 

∞ � 1 � � 
Mµν µ ν αµ αν αµ= x0 p ν − x0 p

µ − i −n n − α−
ν

n n . (4.40) 
n 

n=1 
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We consider in particular M−I , which to be consistent with Lorentz symmetry should 
satisfy 

M−I , M−J = 0  . (4.41) 

From Eq. (4.40), the expression for M−I should be 

M−I = x − I − x I − − i 
∞ 1 � 

α− αI − αI α− . (4.42) 0 p 0p −n n −n n n 
n=1 

This expression is not Hermitian, however, since xI 
0 and p− do not commute. It can be 

made Hermitian, however, by symmetrizing the product. 

−I − I − 
1 I − + p − I 

∞ 1 � − I I −� 
M = x0 p (x0p x0) − i α−n αn − α−n αn . (4.43) 

2 n 
n=1 

−Finally, to clarify the meaning, we replace the αn operators by their expression in terms 
of Virasoro operators, including the constant a: 

1 � � � � � � i 
∞ 1 � �−I − I − I ⊥ ⊥ I ⊥ I I ⊥M = x0 p 

4α′p+ x0 L0 + a + L0 + a x0 −√ ′ p+ n
L−n αn − α−n Ln . 

2α
n=1 

(4.44) 
The calculation of the commutator is too complicated to be included in the textbook, 
and I have not tried it yet myself, but the answer is claimed to be 

M−I , M−J = − 
α′ p

1 
+2 

∞ 

α−
I

m αm
J − α−

J
m αm

I 

m=1 (4.45) � � � � ��
1 1 1 × m 1 − (D − 2) + (D − 2) + a .
24 m 24 

This quantity will vanish identically only if D = 26  and  a = −1. Thus, we have found 
that the bosonic string is a consistent Lorentz-invariant theory only in 26 dimensions! 

V. Unfinished Business: 

There are still some important topics that I did not get to, including construction 
of the state space, tachyons and D-brane decay, and the quantization of closed strings. 
Although I didn’t get that far, these topics are important. Be sure to study them on 
your own. I also did not touch on the particle mechanics or field theory discussions of 
Chapters 10 and 11. 


